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SUMMARY

This is the final report of Grant AFOSR-89-0241 with the Air Force Office of
Scientific Research, which is the continuation of Grant AFOSR-87-0308 to the Georgia
Institute of Technology. The research was performed at Northwestern University with
subcontract to Georgia Tech.

The research covers several aspects of the basic issues that are needed to
develop and implement nonlinear filtering and control schemes for hybrid systems with
applications to tracking, guidance, and control of maneuvering vehicles in uncertain
environments and nonlinear geometry. The research is involved in modeling maneuvering
nonlinear vehicles as switched linear Markov models. The research therefore leads in
several directions investigating various aspects of such models which in general are called
hybrid systems. Three different aspects are considered: The first involves realization and
other generic properties of hybrid systems, including controllability and stability as well as
simulation and averaging. The second involves estimation and detection systems for
hybrid systems, including various related models and approximate filtering schemes. The
third involves the application of switched Markov filtering schemes to the tracking of
maneuvering vehicles.

The research culminated in the conclusion of two Ph.D. thesis by J. Ezzine and
M. A. Ingram at Georgia Tech and one M.S. project by K. S. Lee at Northwestern
University. It also supported the initial stages of three Ph.D. students, P. D. West, C. C.
Tsai, and D. R. Shin who are in various stages of completing their Ph.D. dissertations.




SECTION |
INTRODUCTION

The objective of this research was to develop nonlinear filtering and tracking
schemes for systems subject to complex geomstries and uncertainties. These attributes
characterize the air-to-air engagement scenario. The approach was based on the
approximation of the original nonlinear stochastic model with a piecewise linear model.
Then the resulting model was further approximated by a switched Markov linear model.
The resuiting model becomes then a typical representation of hybrid systems involving
both continuous and discrete dynamics as shown:

X() = Alr()] Xt) + B[] Ue) (1a)
Y(t) = Clrh] X@) + Vet (1b)

where the state vector is X(t), the observation vector is Y(t), U(t) can serve as either the
control vector when considering a control problem, or as the process noise model
representing the model uncertainties for the filtering problem, and V(t) is the observation
noise vector. The noise processes are assumed to be white and Gaussian. The process
r(t) is called either the form index or the macro-state process and is assumed to be a
finite state Markov process taking the values in the set {1,2,....N}. The resulting system
is known as either a switched Markov linear model or a hybrid system model since the
state X(t) is continuous and the vector r(t) is discrete. The linear system switches among
the finite number of realizations (A[i], BIi], C[i]) depending on the value of r(t), and the
switching follows a Markov chain rule.

The research reported under the earlier grants covered both the analysis of the
switched Markov approximation to the modeling of nonlinear systems as well as
realization and characterization results on hybrid systems. These reports also discussed
fitering schemes for such systems and similar models that involve the dependence of the
Markov process parameters on the system state.

This report addresses continuation of these efforts and resulted in the conclusion
of two Ph.D. theses at Georgia Tech. The two completed theses covered two different
aspects of the mixed models that include both discrete and continuous variables. The
firstis by Jelel Ezzine (Reference 1) considered the properties of hybrid systems involving
both discrete and continuous states which in our case reflects the switched linear Markov
models used to represent the maneuvering vehicles to be tracked and/or controlled. The
thesis studied the stability and controllability properties of such systems and derived
conditions under which the systems can be approximated by their statistical average
system. The second thesis is by Mary Ann Ingram (Reference 2) considered an
alternative model for maneuvering vehicles and derived approximate filtering schemes for
such models that involve linear systems driven by impulsive inputs whose rates depend




on the state of the system. Since exact filtering representations are not realizable,
conditions for the convergence of several detection-estimation schemes were obtained
and their result validated via simulations.

This report concentrates on extensions of the results to three areas. The first area
involves the simulation and analysis of the multi-mode! approximate filtering scheme that
has been tested earlier using limited memory only and its extension to three-dimensional
tracking filter for a maneuvering target and is reported in Section Il. The second area,
covered in Section lll, addresses the analysis and control of hybrid systems when the
both the state dynamics and the form index exhibit fast and slow modes of behavior. The
third area considers additional work in the realization of hybrid systems and is discussed
in Section IV. The body of each section is relatively short, as the results are provided in
appropriate appendices.




SECTION 1i
FILTERING SCHEMES FOR HYBRID SYSTEMS

Several models and approximations have been considered for the filtering schemes
for hybrid systems and their applications. Ingram'’s thesis (Reference 2) considered a
continuous state model with Markov chain input whose transition matrix depends on the
state of the systems. Exact filtering schemes cannot be derived analytically or
implemented numerically. A new prior penalty approach to the filtering for such systems
has been proposed and analyzed by ingram in Reference 3 and is shown in Appendix A.
The resulting filter is superior to the suboptimal linear smoother when the rates of change
of the Markov process are very low and when the impulsive input jumps do not take very
small values.

In addition to the research reported in ingram’s thesis, additional approximation to
the nonlinear filtering structure reported in Reference 4 has been proposed. In particular,
the effort has been centered at reducing the memory requirement of the multi-model filter
as well as providing a more realistic simulation scenario. In particular, an extension of the
memory of the filter to 4 steps has been shown to provide a substantial improvements
over the single step memory filter, as shown in Reference 5 and attached as Appendix
B. Furthermore, it has been shown that increasing the filter dimension does not result in
reduced performance as discussed in Reference 6 and attached in Appendix C. This
latest work indicates that the filter is applicable to a three dimensional tracking problem,
and provides and alternative approach to the modeling of the maneuver acceleration.
Analysis methods to indicate the asymptotic convergence of the filter and its performance
are encouraging.

Finally Reference 7 discusses a general framework for the filtering and smoothing
for systems with both discrete and continuous observation models. The results are
primarily analytical in nature and the implementation issues have not been resolved as yet.
The representation is shown in Appendix D.




SECTION 1l
ANALYSIS OF HYBRID MODELS

Two avenues of research have been foliowed in the simulation and analysis of
hybrid systems models. The first established analytical and simulation tools for the study
of how well such models can be used to approximate piece-wise linear dynamic systems.
Earlier results simply addressed the first order densities of such models. In this study the
autocorrelation function of both the model and the original system have been simulated
and compared to verify the conditions (earlier only studied in theory) for the validity of the
approximation. Furthermore, an analytical approach has been developed for the analysis
of the steady-state stationary probability density of the system model and its comparison
to the approximating hybrid model. The results are documented in an M.S. project by K-
S. Lee shown in Reference 8.

The second continued the research into hybrid systems models that involve both
fast and slow dynamics. The fast and slow dynamics are involved in both the systems
models and in the Markov chain that determines the transition among the various
realizations. Earlier work (Reference 9) was concerned with the limiting behavior of such
systems when the Markov chain was either fast or slow. More recently, the results have
been extended to the case where the Markov chain can be decomposed into groups of
fasttransitions. Furthermore, asymptotic results for the convergence of the reduced-order
models have been derived for a variety of cases of fast and slow behavior in the
continuous system model and in the underlying Markov chain. The results are given in
Reference 10, and are shown in Appendix E. One restriction to the resulting
approximation is that system matrices of the realizations involved in each group of fast
transitions have to commute. More recently, this restriction has been successfully
removed as shown in Reference 11 and attached in Appendix F. However, the results
still require the stability of each group of realizaticiis. The research also provide complete
analysis of the multiple-time scale approximation for such systems for both the slow and
the fast dynamics of the system. The relative ratio of the time-scale of the Markov chain
transition matrix to those of the continuous states is crucial to the type of the resulting
approximation.

Finally, the conditions for the control and stabilization of hybrid systems using the
average model constant gain controllers or switched gains controller that may depend on
the correct detection of the macro-state have also been derived. Furthermore, if we
assume that it is not possible to correctly identify the macro-state (the value of r(t)) of the
system, conditions on the probability of detection errors have been found that will make
such a controller feasible. The results are given in Reference 12 and Appendix G.

Overall, these results make it simpler to implement lower order controllers or less
complex controllers for a variety of hybrid systems that either exhibit fast and slow
dynamic responses or satisfy conditions that allow their robust control.




SECTION IV
REALIZATION AND CONTROL

The section addresses several issues in the realization models for hybrid systems.
These models can lead to a more systematic approach to the identification and control
of these systems. Canonical forms for the periodic hybrid systems have been developed
in Reference 13 and shown in Appendix H. The sensitivity of various realizations of hybrid
systems have been developed in Reference 14 and are shown in Appendix |. The
sensitivity is crucial to the efficiency of any identification or control schemes that needs
to be used in conjunction with specific realization. A special case of hybrid systems that
have linear relations among its continuous states can be represented as singular hybrid
system. These systems may also be considered as a limiting case of singularty perturbed
systems discussed in Section lll. References 15 and 16 discuss general approaches to
the realization problem of such systems that have implication on their control. The resuits
are shown in Appendix J and Appendix K. Finally, for randomiy changing hybrid systems
and their underlying Markov chains a novel representation for the system is given in
Reference 17 and Appendix L. Similarly, a novel realization theory has been proposed
in Reference 18 and shown in Appendix M for the realization of Markov chains that are
crucial to the analysis and control of hybrid systems.




SECTION V
SUMMARY AND CONCLUSIONS

The research summarized in this report and supported by the Air Force Grant
provides the basis for the design of estimators controllers for systems subject to random
fluctuations in their models and their environments. The controllers and estimators are
not optimal as it is not possible to implement and analytically derive an implementable
form. Hence, approximation methods have been studied for the derivation of
implementable control scheme and filtering schemes for such systems. Approximations
using slow and fast dynamics separation and reduced-order modeling have been
proposed for such systems to simplify the control and estimation implementation. Finally,
applications to the tracking of maneuvering vehicles have been proposed, the resulting
approximate filter derived and simulated for several one-dimensional and three
dimensional problems.
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SMOOTHING FOR LINEAR SYSTEMS EXCITED BY POINT PROCESSES
WITH STATE-DEPENDENT RATES
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Abstract

Smoothing for a linear system driven by a point process with a rate that
depends on the state of the system is considered. The observation model is
the integrated version of a linear combination of the states in additive white
Gaussian noise. A smoother that uses estimation and detection is compared
with the optimal linear smoother and filter. The comparison is in terms of
the mean squared error (MSE) of the state. The false alarm rate of the
detector is shown to depend strongly on the region of support of the mark
distribution. When false alarms are low, the estimation/detection scheme
has lower MSE than the optimal linear smoother. -

I. Introduction

We consider the state estimation problem for the following single input sys-

tem:
d.".'g = Az:dt-}- BdMg, t 2 0

with the scalar observation process

.
z,:/ Cz,ds + v;
0

where v; is a Wiener process with E{vvT} = [;** V;dr. The n x n matrix

A ; s.:h that the solution to £ = Az is exponentially stable. The scalar
process M; is a random jump process with jump heights, or marks, that are
independent and identically distributed and with jump times that occur with
an instantaneous average rate u{z;]. Thus the rate of jumps depends on the
system state. An example that motivates this model is a manuevering vehicle
where a jump represents an abrupt change in acceleration. The likelihood of
acceleration commands can depend on the position and velocity of the vehicle.
Another example is an electromechanical system where the jumps represent
failures with a likelihood of occurrence that increases under conditions of
excessive heat or current. We are interested in cases where the rate of jumps
is low compared to the bandwidth of the system; under this condition, the
state is not well approximated by a Gaussian distribution.

The process z, is easily shown to be in the class of “piecewise-deterministic
Markov processes,” defined by Davis [1]. Filtering and smoothing for systems
driven by Poisson processes have been considered by Kwakernaak (2, 3] and
Au [4], and for a related process by Blom [5].

I1. The Prior Penalty Detector

This scheme uses observatious over an interval to detect the number of jumps
within the interval and estimate the times and marks of the jumps. The
state estimate i3 constructed by superimposing the system responses to the

1
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detected jumps. In order to reduce computational complexity and memory
requirements, new observations are used to detect new jumps and update
only recently detected jumps. Specifically, the observations over the interval
[A, A+ T), denoted by Z4 a4+T, are used to detect the number N4 a4 of
jumps in the interval and to estimate the vector of jump times ry, . . and
marks uy . . of the jumps. Thus fixed interval smoothing is performed
on the observations in {4, A + T). Then the interval is moved forward to
[A+ A, A+ A+T), and fixed-interval smoothing is performed over the new
interval. A detected jump that is left behind by the moving interval is called a
“finalized detection.” Here, A is small enough such that Pr{N4 4+a > 1} <
1. The system responses to the finalized detections are superimposed to
construct an estimate of the state with a fixed lag. For the sake of notational
simplicity, the following expressions assume that the estimation and detection
is performed on the interval [0, T), and that the initial state zq is known. In
a sequential implementation, the interval is changed to [A, A + T') and z; is
replaced by the smoothed estimate, % 4.

It is noted that the maximum a posteriori (MAP) estimate of Nor can
be expressed as

Lyap{n|Z2or, 20}
{ Pl’{No,T = 0].1‘0}, n=0

EL‘,Q‘(A{ZO.Tlln)y.na NO,T =n, 30}) (1)
x Pr{Nor =nlzo}, n>0

where A{Yo rlT,,8,, No,r = n, 2o} is the likelihood functional. The detector
in the present scheme replaces the averaged likelihood functional in (1) with
the likelihood functional evaluated at the MAP estimates of r,, and u,, given
that Nor = n. Therefore the decision variable is

L{n!Zo'T, 20}
_ | Pr{No7 =0lzo}, n=0 @
T | MZ2or|asita) Nor = n,20}Pr{No,r = n|ze}, n>0

We call this scheme the Prior Penalty Detector (PPD) because the a priori
probablity Pr{Nor = n|zo} serves as a penalty for overfitting and can be
computed offline for the desired range of values for z,.

II1. Simulation ults

Four examples are used to compare the performances of the optimal linear
filter, the PPD, and the optimal linear smoother with the same lag. The per-
formance is measured in terms of the mean squared error (MSE), normalized
by state variance, and the average number of false detections per true pulse
as a function of noise variance. The MSE for the optimal filter and smoother
is computed using the Bode-Shannon method [6]. The MSE for the PPD is
found by time averaging the computer-simulated output.




All examples have the same scalar system model of dz, = —5z,dt + dM,.
The examples differ in the rate function ufz] and the mark pdf p,(u), as
shown in Figure 1. This type of rate function was chosen to yield “bursty”
behavior in the sample trajectories. If the detector succeeds in detecting the
first few pulses that move the state into a high rate region, then the detector
changes its characteristics to allow more detections. The pdf’s were chosen
to illustrate the effect the mark pdf has on the number of false detections.

The MSE results are shown in Figures 2 through 5 for Examples 1 through
4, respectively. The false alarm rates are shown in Figure 6. We observe
that for Example 1, the PPD has a lower MSE than the optimal filter and
smoother, and has very few false alarms. This is because the region of support
of the mark pdf is confined to the positive axis and does not permit arbitrarily
small pulses. In Example 2, the MSE of the PPD is only slightly lower than
that of the linear smoother. The degradation in PPD performance relative to
Example 1 is due to the increased number of false alarms with small marks.
As the noise variance increases, the PPD makes about the same number of
false alarms, but with larger marks. In Example 3, there is a rather dramatic
correlation between MSE and the false alarm rate, as both increase with the
noise variance. The mark pdf for this example allows the false alarms to
have large positive and negative marks that nearly cancel. However, time
quantization in the simulation does not allow such overlapping false alarms
to approach perfect cancellation as the noise variance decreases. The mark
pdf for Example 4 was selected to give the worst case performance of the
PPD because it allows arbitrarily small false alarm marks as well as large
false alarms that nearly cancel. Again the false alarm rate is independent of
the noise variance, but the rate is larger than for Example 2 because there is
no penalty for arbitrarily small marks. Also the optimal linear smoother is
consistently better in terms of MSE.

IV. Conclusions

The simulation results indicate that if the PPD false alarm rate remains
below 3 per true pulse, the PPD yields an MSE lower than the optimal linear
smoother with the same lag. It is noted that these results are somewhat
biased in favor of the linear estimators. One reason is that the MSE for
the linear smoother and filter are evaluated using a formula that assumes an
infinite observation interval, rather than an interval of length equal to the lag
as in the PPD. Another reason is that although the ratios of (jump rate times
mean squared mark value)-to-(system bandwidth times noise variance) for
our examples were useful for studying false alarm behavior, they guaranteed
good performance for the linear estimators. To see poorer performance by
the linear estimators and better performance by the PPD, one should reduce
this ratio.




Normalized

Normalized

Example rate function pfz] mark pd( pu(u)

N

J

2

T\

3 4

—! -0
4j4

Figure 1. The rate function and mark pdf for the four examples.

0.5
o—e = Opt. Ln. Filter
0.4 a—a = PPD Algorithm
) o—0 = Opt. Lin. Smoother

[ ]
g o3l
2
3
g 0.2

0.1

0.0

Observation Noise Strength, V
Figure 2. Normalized mean squared error for Example 1.
03
e—e = Opt. Un. Fiiter
0.4} a—a w PPD Algorithm
) 0—0 = Opt. Un. Smoocther

[ ]
g
§ 0.3
T
s
g 024

0.1

0.0 + +

.0005 .001 002 005 .01
Observation Noise Strength, V

Figute 3. Normalized inean squared error for Example 2.

0.5
e—e = Opt. Un. Fiter A

04l &—a = PPD Aigorithm /
~°

) 0—0 = Opt. Lin. Smoother
03¢ . .

8
b
E t o 2 { )
z hg‘ . //A
014 ../o/'
& '._—-‘
0.0 + +
.0005 .001 .002 005 .01

Observation Noise Strength, V
Figure 4. Normalized mean squared error for Example 3.

0.5

e—eo = Optl. Lin. Fliter
0.4t A—a = PPD Algorithm
0—0 = Opt. Lin. Smoother

031

0.2¢

Normalized
Error Variance

0.1 J

0.0 + +
0005 .001 002 005 01

Observation Noise Strength, V
Figure 5. Normalized mean squared error for Example 4.

10

=4

8 ex. 3
S
-
1
s ex. 4
§4 sttt —A Ay
5

2 2 ex. 2

0 f _ _ _ A:ﬂ— —= ex. 1

0003 001 002 005 01

Observation Noise Strength, V
Figure 6. The number of false alarms per true pulse for the four examples
using the PPD.

References

(1] M.H.A. Davis, “Piecewise-deterministic Markov processes: a general
clase of non-diffusion stochastic models,® Journel of the Royal Statis-
tical Society, Ser. B, 46, No. 3, pp. 353-388, 1984.

(2] H. Kwakernaak, “Filtering for systems excited by Poisson white noise,”
Ed.: A. Bensoussan, J. L. Lions, Control Theory, Numerical Methods,
and Computer Systems, Springer Lecture Notes in Economics and Math-
ematical Systems, Vol. 107, Berlin, pp. 468-492, 1975.

{3] “Estimation of pulse beights and arrival times,” Asfomatica, Vol. 186,
pp. 367-377, 1980.

[4] S.P. Auand A. H. Haddad, “Suboptimal sequential estimation-detection
scheme for Poisson driven linear systems,” Imformation Sciences, Vol.
186, pp. 95-133, 1978.

[5) H.A.P. Blom, “Continuous-discrete filtering for systems with markovian
switching coefficients and simultaneous jumps,” Proc. 2Ist Asilomar
Conf., Pacific Grove, November 1987, p. 261.

[6] J. B. Thomas, An Introduction to Statistical Communication Theory,
Wiley, New York, 1969.




APPENDIX B
P. D. West and A. H. Haddad
Approximate Switched-Markov Filtering for Nonlinear Systems

Proc. 1990 American Control Conference
San Diego, CA, pp. 665-666, May 23-25, 1990.
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P.D. West
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ABSTRACT

The Kalman filter provides optimal state estimates for
completcly known linear systems. Unfortunately, many physical
systems are neither exactly known, nor linear. Numerous filtering
schemes for nonlinear systems have been introduced over the
years: gencral theories for nonlinear systems tend o be complex,
and, due to their gencrality, are of little practical use to the design
engineer. On the other hand. solutions for specific nonlinearities
usually apply only to a single nonlinearity, and thus are limited in
their applications. This paper, however, presents a methodology
whereby the nonlinearity is first approximated by a piecewise
linear model, and then 2 common filtering scheme is applied. The
efficacy of this approach is that the same filtering algorithm may
be applied to 2 broad class of nonlinear stochastic systems.

I INTRODUCTION

Specifically, the problem at hand assumes that, given
nonlincar observations y(k), it is desired to estimate the state x(k)
of the system

Xy =8(%)+bw, (1

where x, is the 2 vector representing the system state at time &, w,
is a white, discrete time /-dimensional vector (Gaussian random
process with covariance matrix Q, and b is an n x ! dimensional
matrix. The observation model is assumed to be given by
N=hx)+v, (V)]

where y, is an m-dimensional vector which represents the
obscrvation at time &, and v, is an m-dimensional white Gaussian
measurcment noise process with covariance R. The state
propagation function g(-) and the observation function h(-) are
allowed to be nonlinear.

The nonlincarities in (1) and (2) are approximated by the
continuous pieccwise lincar approximation given by the following
model:

gx)=Gx+g, for xeQ,, i=1..M, 3)
and

hix)=Hx+h, for xeQ,, i=1,...M, @)
where {2, }and{Q, } panition the state and measurcment spaces.
For simplicity of notation, the cross product of the two partitions
may be formed o yield one partition,
{QLi=1,..M; MMM, Aleachtime step k, the system is
assumecd to be govemed by one of the M models. These M system
modcls arc called systcm macro-states.

The final model assumption is that the system jumps from
macro-state { 10 macro-state ; according to a finite state Markov
process, /. In order to maintain a "memory” of the last r time
steps. a paramecter J (k) is inroduced, where J(k) represents the sct
of the M macro-states, i.e..

{(JUN = U erssdavdn} (5)
where
Je {1.2,... .M} (6)

Conccptually, the new filter is based on two assumptions for
the systecm model: 1) The nonlincaritics may be approximated by
continuous pieccwise lincar functions and 2) This N-segment
piccewise lincar model may be approximated by N separate affinc
systcms driven by the same process, with the true system output
being approximated by randomly selecting one of the N outputs.
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Conditions supporting the validity of these assumptions are
derived in (1]. The second assumption allows application of the
theory of swiching systems. The optimal (albeit non-realizable)
filter for switching systems was introduced by Ackerson and Fu in
1970 (2], and consists of a likelihood-weighted sum of Kalman
filters "tuned” to each possible switching sequence, and. hence,
involves exponentially increasing complexity with time. Their
paper did not consider the additional structure present in the
hybrid-state model where the dynamics of the system macro-state
are independent of the system state, but where the system state is
not independent of the macro-state. The optimal filter for this
hybrid-state mode] was presented by Bruneau and Tenney in [3].
It is shown that this filter is also infinite dimensional and
nonrealizable. Numerous schemes have been introduced to
reduce the filter complexity by casting away unlikely trajectorics
or combining similar estimates (see e.g. [4]).

A primary difference between this work and that of (2] is that
here, in the underlying piecewise linear model. the sysicm
macro-state is a function of the system state. This fact is exploitcd
in the filtering algorithm through the consistency update stage. A
consistency update occurs when the suie estimate for the i
model, 2, is compared with the domain of the i* line segment (in
the scalar case). If the state estimate produced by a given filter is
not within the domain of the {* line segment, then the statc
estimate is said to be inconsistent with its macro-state, and less
weight is placed on that estimate.

I FILTERING SCHEME

The filtering scheme applied here consists of maintaining onc
Kalman filter "tuned” to each of the M" macro-state trajectorics.
Thus. for each new observation, an entire set of M” innovations
will be formed — one for each filter. Next, the usual measurement
and time updates will be performed for each filter, producing M”
covariance matrices and individual state estimates. Next, the
overall combined estimate, £°, is formed from the likelihood
weighted sum of these M’ individual estimates. Finally, the filicrs
are aggregated, and the conditional probabilities and likclihood
functions are modified according to the consistency update stage.
A detailed summary of these sieps is provided here. Additional
details of the algorithm may be found in {5].

Before describing the individual filtering steps. some
additional definitions are required. The Markov transition matrix,
I, specifying the transition probabilities from macro-state §, t0 §,
is obtained from:

M,=Pr{x,. e QlxeQ} N

The marginal steady-state probabilities p, of macro-swate §; arc
defined by the solution to:

p=pll ®
where p is a row vector with components p,. The a posteriori

probability that the system is in macro-state i at time & may be
expressed as

ﬁ.(k)= Z Am;)(k) (9)
-1

where J(k.i) denotes all M"~' sequences at time & which end in
macro-state i.

Consistency Update

If the variance of any individual cstimate, P,q _ ), is small then
the information provided by § may be neglecied. [n this case.
these values are changed based on the position of the estimate
2;a-n(k) in the appropriate region Q,, and used to update the a
posteriori macro state probabilities g,(k [ J(k - 1)). In tum, these
are used in the next stage for updating g,(k + 1 1 k). If, on the other




hand, the individual estimate covanance is large, the macro state
information is weighted more heavily in dctermining the macro
state probabilitics. In this work, this updating stage was achieved
through the following equation:

Pk 1 J(k = 1)) = alPsq_ )Pk | J(k = 1))+

“ ‘a(P/(:-n}U:{im-l)(k)} (10)

Here, a(P) is a function of the norm of P which tends to zero as P
becomes small, and which tends o unity as P becomes large. The
operator U,(x) is an indicator function that is equal 10 unity if
x € Q, and is zero otherwise.
Time Update

The macro state probabilities are updated by using the
consistency updated values pj, together with the transition
probabilities,

Apcilk + 11K =Bk | J(K = 1A, (O, (1D

Time updates of the individual state and covariance estimates are
achieved via the standard Kalman filter equations {or the
appropriate models.
Measurement Update

As above, the individual state estimate, the innovations, and
the covariance may be calculated using the Kalman filter for the
appropriate model under consideraton. The question now is
concemned with the measurement update of ihe macro state
probability estimates. This can be accomplished by using the
standard likelihood function for a switched-Markov model,
which, it shouid be noted, is only an approximation in this case.
The expression for the a posteriori probabilities in this case will
be proportional to the likclihood functions Ay, ,,,(k). The update
equation is

Apgorlk + 1 =BAsg. ok + 1K) x

1
cxp{—iv'm.m(" + DR ™V,qu ik + l)} 12

where B is a nommalization coefficient, the vj,.,, are the
innovations processes arising from the Kalman filter tuned 10 the
J(k +1:4) model. and A represents the consistency updated
likelihood value.

Combined Estimate

The combincd estimate £°(k) is obtained by using the
likclihood-weighted sum of the individual estimates, i.e.

k= Aokt (k) a3

Aggregation

To avoid expanding memory, it is necessary to reduce the
number of filters at each time step. This may be achieved in a
numbcr of ways including casting away unlikely sequenccs,
merging similar sequences, or, the approach taken here,
systematically aggregating at the eariiest time.

The tcchmb'ﬁuc developed for reducing the number of filters
required to M, is as follows: consider the collection of
macro-statc sequences , / (k) to be the sequences (of length #) at
time £, that began in macro-state i, and progressed !0 macro-state
j at the next time step. Similarly, the notation ,/(k) indicates the
set of all sequences that began in macrostate k. The aggregation
step involves forming likelihood weighted sums over the index i
for cach j, thus reducing the filter memory by one.

o
£ m= EI A,l’(ﬂi,l’m (14)

The covariance is updated using the Gaussian sum approximation,
ie.

[ . .
P./m = .gl Ay P.'n(‘)"i.’-u)‘ e "i,l(lr‘",m) (15

o
A"/m'—' I

A (16)

I ANALYSIS

Since the filter is complex and nonlinear, it has yet to succumb
1o any closed-form performance analysis techniques. Hence,
Montc-Carlo simulation techniques were used 10 asscss its
performance. In the simulation, a scalar version of the proposed
filter with memory, 7, of length one (PF1) and four (PF4) is
compared to a standard Extended Kalman Filter (EKF). Both the
system function (1) as well as the measurement function (2) are
defined by 3 segment affine maps g(x)=Gx+k& and

h(x) = Hx + k;, where:

_[20,1xk1 _{5.0,|x|<0.5
G‘{~o.2.|x;zl H=1o11xp0s 7
2.2sgn(x), Ix[|>1 _{2.555gn(x), 1x[>0.

k {0. Ixis1 k=10, [xis1 ?‘3’

Both Q and R were set to unity and » was varied from | to 10.
Figure 1. is a graph which depicts the rewative eror variance as a
function of b parameterized by the filter 1vpe (PF1, PF4, or the
EKF). As can be seen, the improvements tetween either of the
proposed filters and the EKF is striking. Additional simulations
(not presented here) indicate similar trends, with the best
performance increases being seen for non-injective nonlineantics.
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Figure 1. Filter State Estimate Error Variance Performance

IV SUMMARY AND CONCLUSIONS
This paper presents a new sub-optimal fiiter to be used for the
nonlinear estimation problem in systems with piecewise lincar
models in both the system and observation equations. The
approximations used are based on utilizing the switched-Markov

.mode! for the system as well as on modilying the resulting filicr

with the physical constraints of the states of the model. Not all
facets of the filter are in final form, and work remains in the arca
of the exact formulation of the consistency update, as weil as filter
aggregation. Nonetheless, preliminary results show that the filter
may work well in 2 broad class of nonlinear filtening problems.

REFERENCES

1. Verriest, El., and AH. Haddad, "Linear Markov
Approximations of Piecewise Linear Stochastic Systems”,
Stoch. Anal. and Appl., Vol. 5, No. 2, pp. 213-244, 1987.

2. Ackerson. G.A., and K.S. Fu. "On State Estimation in
Switching Environments,” /EEE Transactions on Automatic
Control, AC-15, No. 1, Feb. 1970, pp. 10-17.

3. Bruncau. F. and R.R. Tenney, "Optmal Smoothing and
Estimation for Hybrid State processcs,” MIT/LIDS-P-1269,
January, 1983.

4. Tugnaic, JK., and A.H. Haddad, "A Detection-Esumation
Scheme for State Estimation in Switching Environments™,
Automatica. 1979, Vol. 15, pp. 477-481.

S. Haddad., A.H., E.l. Verriest, and P.D. West, "Approximate
Nonlinear Filtering for Piecewise Linear Systems.” Proc.
1987 NATO AGARD Symposium on Guidance and Control.
pp 9-1 10 9-10, Athens, Greece, May 5-8, 1987




APPENDIX C
P. D. West and A. H. Haddad
Switched Markov Filtering for Tracking Maneuvering Targets

Proc. 1991 American Control Conference
Boston, MA, June 26-28, 1991.
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ABSTRACT

A new filtering concept is presented for tracking maneuvering
targets. A conventional Markov switching process is used to model the
target maneuver process, but a new filtering scheme is employed. The
filter uses a traditional track-spliting approach, with one Kalman filter
tuned to each branch of the tree. To limit filter complexity, aggregation
is performed over the carliest timestep of an arbitrary filter memory
length. Before aggregation, a unique consistency update stage is
employed where each of the filter’s state estimates is compared with the
associated conditional model for that filter. If the two are inconsistent,
(e.g. 2 large acceleration component generated from a non-maneuvering
model), less weight is placed on that estimate. Results are presented
from a full 3-D tacking model.

I INTRODUCTION
The concept for the filtering scheme presented here arose from a
nonlinear fillering algorithm presented earier [1]. In the nonlinear
filtering application, the nonlinearity was first approximated by a
piecewise lincar model. After that, a filter based on a switching model
was developed. In the following work, the maneuvering target problem
is naturally described by a switching system, allowing for the application
of a similar filter structure.
Specifically, the problem at hand assumes that, given observations
y(k), it is desired to estimate the state x(k) of the sysiem
b A =Ax,+l‘,(wn+ “-‘,) ¢}

where x, is the n vector representing the system state at time k, w, is a
white, discrete time /-dimensional vector Gaussian random process with
covariance matrix Q, u,is a deterministic, but unknown control input,
and I, is an a x ! dimensional matrix. The observation model is given by

n=Hx+v, )
where y, is an m-dimensional vector which represents the observation at
time &, and v, is an m-dimensional white Gaussian measurement noise
process with covariance R.

For the maneuvering target probiem, we partition the acceleration
comnonent of the state space into M regions, {{3},i=1,...M. The
model allows the system to jump from maneuver state (control input) i
10 maneuver state ; according to a finite state Markov process, J. In
order to maintain a "memory” of the last r time steps, a parameter J (k) is
introduced, where J (k) represents the set of the M” maneuver states, i.e.,

&} = Uaeparseenrdimrehi} 3
where
Jie {1,2,...M} 4

In this work, the acceleration partition width was set to A /M ~1,
where A__ represents the maximum acceleration to be modelled.

The optimal (albeit non-realizable) filter for switching systems was
introduced by Ackerson and Fu in 1970 (2], and consists of a
likelihood-weighted sum of Kalman filters "tuned” to each possible
switching sequence, and. hence, involves exponentially increasing
complexity with time. Numerous schemes have been introduced to
reduce the filter complexity by casting away unlikely trajectories or
combining similar estimates (see ¢.g. {3]).
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A primary difference between this work and that of {2] is that here,
in the underlying model, the system maneuver state is a function of the
system state. This fact is exploited in the filtering algorithm through the
consistency updale stage. A consistency update occurs when the state
estimate for the # model, £,, is compared with the domain of the
maneuver command. If the acceleration component of the state estimate
produced by a given filter is not within the domain of the /* region, then
the state estimate is said to be inconsistent with its mancuver state, and
less weight is placed on that estimate.

II FILTERING SCHEME

The filtering scheme applied here consists of maintaining one
Kalman filter "tuned” to each of the M" maneuver state trajectories.
Thus, for each new observation, an entire set of M™ innovations will be
formed—one for each filter. Next, the usual measurement and time
updates will be performed for each filter, producing M™ covariance
matrices and individual staie estimates. Next, the overall combined
estimate, £°, is formed from the likelihood weighted sum of these M”
individual estimates. Finally, the filters are aggregaied, and the
conditional probabilities and likelihood functions are modified
according to the consistency update stage. A detailed summary of these
steps is provided here. Additional details of the algorithm may be found
in [4].

Before describing the individual filtering steps, some additional
definitions are required. The Markov transition matrix, [T, specifying the
transition probabilitics from maneuver state S, to §; is obtained from:

I;=Priu,,, e Q|u e Q} &)

The a posteriori probability that the system is in maneuver state i at
time £ may be expressed as

l’ l(k) = l(lz— b Ala:')(k ) (6)

where J(k:i) denotes all M"~' sequences at time k which end in
macro-state i.
Target Model

The explicit state equations, assuming a 1 second update rate, are as
follows:

p ll%p 1 0 0)|[™ 0
v=011v+010“’-+0 m
a ). a,, \0 0 1)l\w LA
000 “h

where p, v, and a represent the targets’ position, velocity and
acceleration, respectively. Although numerous coordinate systems exist
for target tracking, polar-spherical (measurement) coordinates have been
selected for this analysis. Using well-known (5] approximations, this
formulation leads to three loosely coupled state equations-— one each for
range, elevation, and bearing. This leaves us with three 3 x3 systems
rather than one 9 x 9. The impact of this is more important, though, when
the complexity introduced through multi-model approach is considered.
If N different maneuver commands are modelied for each axis, then there
are N’ possible systems for the coupled filter, and only 3N for the
decoupled case. When a memory of M timesteps is admited then we

have M"’ possible systems for the coupled case and only IN* for the

decoupled case. If § mancuver commands, and a memory of 3 timesteps
are considered, the decoupled filter requires less than two percent of the
complexity of the fully coupled system. Thus, for the same
computational complexity, many more maneuver commands could be
added to the decoupled filter.

In summary, then, data are measured in the spherical coordinates,
range. clevation and bearing. Independent filtering is performed in each
coordinate dimension by the new filtering scheme. A singie estimate is
produced in each of the three dimensions, at each timestep.




Consistency Update

If the variance of any individual estimate, P4 ., is small then the
information provided by g may be neglected. In this case, these values
are changed based on the position of the estimate £,,_,(k) in the
appropriate region Q,, and used to update the g posteriori macro state
probabilities p,(k [ J(k - 1)). In tum, these are used in the next stage for
updating p,(k+1|k). If, on the other hand, the individual estimate
covariance is large, the macro state information is weighted more heavily
in determining the macro state probabilities. In this work, this updating
stage was achieved through the following equation:

Pkl k-1 =Py )P (k1Jk-1))+

{1 - a‘(P.la-l))}Un {ila-l)(k)} (8)
Here, a(P) is a function of the norm of P which tends to zero as P
becomes small, and which tends 10 unity as P becomes large. The
operator U,(x) is an indicator finction that is equal to unity if x € £, and
is zero otherwise.
Time Update
The macro state probabilities are updated by using the consistency
updated values g, together with the transition probabilities,
Asgralk + 11K) = Bk | J(K = 1))A;q o0, ®
Time updates of the individual state and covariance estimates are
achieved via the standard Kalman filter equations for the appropriate
models.
Measurement Update
As above, the individual state estimate, the innovaoons, and the
covariance may be calculated using the Kalman filter for the appropriate
model under consideration. The question now is concemed with the
measurement update of the macro state probability estimates. This can
be accomplished by using the standard likelihood function for a
switched-Markov model. The expression for the a posteriori
probabilities in this case will be proportional o the likelihood functions
Aa. (k). The update equation is

Asgoinfk+1)=BAsq, 0k + 11 k) x

1 .
exp{ —Ev’,a,m(k + DRV, g1k + 1)} 10)

where B is a nommalization coefficient. the v,q,,, are the innovations

processes arising from the Kalman filter tuned to the J(k + 1;i) model,
and A represents the consistency updated likelihood value.

Combined Estimate

The combined estimate £°(k) is obtained by using the
likelihood-weighted sum of the individual estimates, i.e.

l'(k)=l§)A,,,(k)t,¢,(t) 11

Aggregation

To avoid expanding memory, it is necessary to reduce the number of
filters at cach time step. This may be achicved in a number of ways
including casting away unlikely sequences, merging similar sequences,
or, the approach taken here, systematically aggregating at the ecarliest
time.

The technique developed for reducing the number of required filters
to M, is as follows: consider the collection of macro-state sequences
J{k) W be the sequences (of length r) at time &, that began in
macro-state i, and progressed to macro-state j at the next time step.
Similarly, the notation ,J(k) indicates the set of all sequences that began
in manecuver state k. The aggregation step involves forming likelihood
weighted sums over the index i for each j, thus reducing the filter
memory by one,

o
£ = ,2_:‘ Aad sl s (12
The covariance is updated using the Gaussian sum approximation, i.c.
»
P g ‘Z| A,l,a)[ P @) +1 .’.ﬂ){.l.ﬂ)} -1 ,JO){ ) a3

Mo
Awm=ZA (14)

m RESULTS

The filter was implemented on a digital computer using 5 maneuver
commands per axis and 3 timesteps of memory. Further, a simple
3-state, 3-axis Kalman filter was implemented as a first-cut benchmark.
The Kalman filter noise covariance parameters and the parameters of the
new filter were set equal. Realistic flightpath data were generated using
the Air Force BLUEMAX_I flightpath genecrator program, with the
F-16A aircraft characteristics file. Space here allows inclusion of only a
single tracking performance example. For this example, the target flies
along the X-axis at a speed of 500 fps until it reaches x=2000 feet. At
this point, the afterburner is tumed on and the target initiates a strong
climbing lefi-hand tum. In figure 1. the actual trajectory is highlighted
with an x on each data point. The trajectory highlighted with diamonds
shows the performance of the simple Kalman filter, while the trajectory
indicated with circles shows the performance of the new filter. As can
be seen, the transient behavior of the new filter is superior.

Filter Pertormance

N . True Trgjectory
N ¢ . Kaimon Futer
M . New Filler

Figure 1. Filter Performance

IV SUMMARY AND CONCLUSIONS

This paper presents a new filter to be used for tracking maneuvering
targets. Not all facets of the filter are in final form, and work remains in
the area of the exact formulation of the consistency update, as well as
filter aggregation and filter tuning, or parameter selection. Nonetheless,
preliminary results are promising. Clearly, the next stage of the rescarch
should address benchmarking the proposed filter against some other well
accepted multi-model filter such as the interacting multiple model filter

[6]).
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Abstract-The filtering, smoothing, and prediction prob-
lems for mixed-type states and observations(continuous plus
discontinuous) are considered. Normalized and unnormal-
ized forms for the corresponding three types of estimates are
obtained, which are formulated in the unified frameworks.

1 Introduction

Elliott and Antonelli (1,2] discussed the smoothing and
prediction problems for Wiener-type observations in terms
of semimartingale decompositions and measure transforma-
tions. Analogous problems for counting observations were
treated in [3] and [4] independently. We extend these i as
to general estimation problems where both the signal and
the observation consist of Wiener processes and counting
processes, and moreover there exists dependence between
signal and observation noise.

For the nonlinear filtering for these types of general prob-
lems, Gertner{5] obtained optimal conditional expectations
based on a measure transformation and a Fubini-type the-
orem. He constructed a new equivalent reference measure
under which he derived normalized and unnormalized dis-
tributions directly from the definition of conditional expec-
tations and Bayesian formulas, not relying on innovation
methods and appropriate transformations.

Based on Gertner’s general model, we will obtain nor-
malized and unnormalized estimates for the smoothing and
prediction problems in a different way. Our approach is first
to derive the normalized forms using innovation methods,
then the unnormalized forms indirectly, and finally direct
derivations of the unnormalized forms will be made. This
paper shows a unified approach to general nonlinear estima-
tion for smoothing and prediction problems.

One example of such a mixed type observation was given
by Hoversten et.al. (6] who considered that in optical com-
munication receivers, the detector output currents could be
modelled as stochastic processes. Those processes contain
doubly stochastic Poisson processes due to photoelectron
and dark current and a Wiener process due to thermal noise.

General terminology and assumptions are presented in
the next section.

2 Notation and Preliminaries

Let (11, 7, P) be a complete probability space and let
{#i,t € [0,T]} be a nondecreasing family of o -fields of
F such that 7 is right continuous and % contains all null
sets. All stochastic processes are defined on (2, ¥, P) and
a finite time interval (0,T], and are scalar-valued. We de-
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note the class of square integrable (local) martingales by
M3(F, P)(resp. Mise(#,P)). Assume that the signal and
observation processes have the following representation

¢t - -
J(,=xf,+[0 f.du+ M, + B,

o
y¢=/° hadu + W, + N,

where f; and h; are square-integrable Z-adapged processes,
M, W, € M}(#, P) with < W >.= ¢, and H; and N, are
integrable counting processes such that

Q.= H - /;' ~udu € M}(%, P), (1)
- ¢
G =- [ Adue WA, P), 2)

where ¥, A are square-integrable non-negative F-predictable
processes. We assume that there exist #-predictable pro-
cesses aq, by such that

- - ¢
< MW >.=/° aydu,

[év I-V]. = [é» e = /o‘ bud(gly = /O.b.dﬁ,.

Next we describe a measure transformation which plays
a key role in obtaining the unnormalized distribution.
Define a measure P, equivalent to P on (11, ) by

%’ = ezp|- /o T h.dﬁ.—% [o T h2du~ [ T ()N + /o T (de=1)du].

By Girsanov’s theorem, P is absolutely continuous with re-
spect to Py with Radon-Nikodym derivative

dp _ a,
dP, ‘dP
T T
+ /o In(AJ)dN, — [o (M« - 1)du].
where W, = W, + [{ h du. It can be shown that

_ r 1T
) ‘=ezp[/; hdW, =3 [ hidu

A= ezpl ‘ h.dW.—% / ‘hidu+ / ' In(A)dNu~ [ ‘(Ae=1)du]
(3)

is a (7, Py)-martingale such that
dP
A= Eolgp- | 7.

Furthermore by the differential rule, A, satisfies the integrai
equation

A= 1+/°' A..h,,dW.,+/°‘ Aa-(Ay = 1)d(Ny —u).  (4)

Then under the measure transformation the observation pro-
cesses are simplified.
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. t
W, =W, +/; hedu € M} (7, Po),

1
@ =d+ [ (= 1du = Nt € M(5, P).
Note that

< 1774 >i=< W >=t, [a]; = [q]. =Ng = ﬁg.

under both measures. Similarly, the signal process is aiso
changed under the new measure P,

Me=M, + /o‘h,.a-..du € M}(#, Py),

Q=G+ [ - Dbudu € W, ).

Thus under P, the signal and observation process are of the
form

X.=X.,+/;f..du—/o‘h.a.du+M..+/o‘b..du

- /o *Abudu + Qs + [o  mdu, (5)

Yg = Wg + Ng. (3)
It is also known that X, has the same distribution under
either measure (7).

The following theorem(Fubini-type theorem for stochas-
tic integral) is of critical importance in the derivation of the
optimal conditional distribution. It provides conditions for
interchanging conditional expectation and stochastic inte-
gration [5].

Theorem 1: Let .
M Vi€ M, P),  Gi=o(Vis<t).
Then .
E(M: | 6l = [ aav. ™
where A<MV >,
= d<V >,

is an F-predictable process, and &, is a Gi-predictable pro-
jection of a, onto G, such that s

T
E[ ald <V >,< 0.
]
As special cases, (1) if MLV then E[M,| G| =0.

(2) if /, is & square-integrable i-predictable process, and 7
and Gi(t > s) are conditionally independent given §,, then

E[/orf-dVILG‘] =/°‘i.dV. )
where j, is the predictable projection of f; on G:.O

Since independent increment processes Wy, N; satisfy (2},
we get known results(5,6):

B[ b | 771 = [ Elha| T IW.,
B[ dudau | 71 = [ E | AL Mo
E[ aude | 7] = [ Elau | 77 dn,

an

for integrable, %-adapted processes h; and a;, and an 7-
predictable process A,.

Next is the general martingale representation when the
filtration is generated by both Poisson and Wiener processes
(7, p246.

Theorem 2:
Let M, € Mi.(Ys, P),
sets).
Then there exist Y,-predictable processes K; and R with
3 K? +|RMs < oo, such that

Y = o(W,,Niys < t){/(P null

¢ ¢
M.=Mo+]° K.arW.+/o R.dq,
where ¢ = N; - ¢t.0

We are now in a position to derive the following optimal
estimates, i.e. the conditional expectation of X, given the
observation o-fields:

for the fiitering case X, = IL(X:) = E[X, | Y]

for the smoothing case IT,(X,) = EB[X, | Y){(s < ¢)

for the prediction case IT,(X;) = E[X; | Y,](s < t)
For the filtering problem, Gertner [5] derived the normal-
ized and unnormalized equations directly from the defini-
tion of conditional distribution and Bayesian formulas under
the transformed measure. We take alternative approaches
through two steps, i.e., the innovation approach with semi-
martingale decomposition method for normalized forms [1]
and then the measure transformation approach for unnor-
malized forms (indirect derivations) [2). For smoothing and
prediction problems we also include direct derivations of un-
normalized forms [3,5|. All detailed derivations are included
in the appendix( A-1 through A-9).

3 Filtering
Rewriting (1) and (2), we have the F-semimartingales
for a signal and an observation process

x.=Xo+/°‘l.du+/:1«du+(ﬂ'lc+éc)- )

"y;=W‘+N‘=/:h-du+/:x.du+(ﬁ;+ag). (10)
The filtering problem is to derive
X =m(X.) = E(X, | ¥

where Y; = o(ys, s < t) = o(W,,N,,s < t). Noting that
2 = [2 Judu = [ 4.du is a Yi-innovation martingale, it can
be represented as the stochastic integral with reapect to the
innovation process which has two components ( for a unique
representation refer to {7. 0264])

n=w- /; hydu, (11)

m=N.—/°'X.du.

Elliott [1} observed that for continuous-type state and ob-
servation

(12)

E(th | yc] = !hE[X« [ ycl = J.fdh
is a Y,-semimartingale and 20 its decomposition, as the sum
of a martingale and a bounded predictable process, is unique.




Then he obtained two representations for Xy , compared
bounded variations parts, and finally got filtering formulas.
Applying this idea to the general stochastic equations (9)
and (10), the resulting normalized filtering formula is of the
form(see A-1)

IL(X0) = Mo(Xo) + [ (Ma(fe) + Ma(ra)ld

+ [ IM(Xuh) = (KT (h) + (it

¢
L e OO [l (XA ~Tae (X T () + T (Bt
(13)
where IT;_();) heuristically implies the predictable version
of that conditional expectation. This approach is a little
different from ones taken in (7,8] and will be used in later
developments.

This equation can be simplified by introducing the ref-
erence probability measure P under which the observation
process become simple. The resulting equation is the linear
unnormalized conditional expectation. From (4) and the

Bayesian rule, we have
M) = El% | y) = S bl - o)

where 0,(X) is the unnormalized conditional expectation,
E, is the expectation with respect to Py , and oy(1)(= A,)
satisfies (see A-2)

a(l)=1+ /: o hdW, 4 /: Ou-(Ay ~ 1)dg,. (14)

Applying the product rule to o:{X,){= a,(1)T(X,)) gives

8(X) = 00(X0) + [ ulfu+ 7o + [ o+ ],

+ /; ! Gusl(he = 1) X + budjdde. (15)

An alternative approach cbtains (15) directly from the def-
inition ,(X,) = Eo[AeX: | Y:] by representing A, X, by a
stochastic integral and taking conditioning{5).

Remark: In (5], Gertner first obtained o¢(X) and then
derived IT,(X) by the product rule. Thus he could avoid the
proof of the existence of martingale representation theorem.

4 Smoothing

The smoothing problem can be solved in 2 manner sim-
ilar to the filtering problem. We consider the conditional
expectation, IT,(X,) = E(X, | ] where 0 < s <t < T.
Notice that for fixed s, IT(X,) is an Y, -martingale and so
it has a martingale representation with respect to the inno-
vation martingale such that

(@) =M(®) + [ Koadia + [ Reudis  (16)

where K, ., R,. are Y, -predictable processes to be deter-

mined. The same procedure as for filtering results in a re-
cursive smoothing equation(see A-4)

M) = M(X) + [ (Ta(Xoha) = (Ko TLa(hu)ld
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[ O M () = T (X)L (0} it (17)
For the unnormalized form, by the Bayesian formula

EO(XnAl I yl] = an.t(xl) = ac,t(xo)
Eo[Ac | Yi] gus(1) a(1)

L(X.) = E[X, | Y| =

is obtained. Again, applying the product rule to o,,(X.),
we obtain the unnormalized form for smoothing (see A-5):

Ua.t(xa) = d,,,(x.)+/.' d.,.,(X.h,.)dW.,-{»/:‘ Osu- ((,\..—I)X,)dq‘..
(18)

Notice that this is a linear equation for o,;. Alternatively,
(18) can be derived from the definition 0,,(X,) = Eo[X,A. |
Y:] by representing X,A. by stochastic integrals and taking
conditional expectations under E, (see A-6).

5 Prediction
The same procedure can be applied to derive the condi-
tional expectation of the form

(X)) = E[X. | Y.]
where 0 < s <t < T. For fixed t, I,(X,) is a Y, -martingale
, 80 it has a representation of the form

(X0 = Ta(Xo) + [ Kusdvn+ [ Rusdis

where K, R, are integrable Y/, -predictable processes. For
convenience of computation of the gains K,;, R, s, an aux-
iliary process Z, = E[X, | %],0 < s <t < T, is introduced,
which produces IT1,(X;) = E{Z, | ¥,}. Computing the gains
, We can show (see A-T) that

I, (X,) = To(Xe)+ /o M (huXe) =T (X)L (h) + L () |drse

(19)

(20)

[ Tam ) M (A X~ e (X0 e (D) T (2
(21)
Using the Bayesian formula to get a simpler equation yields
- EO[XtAc ' ya] = dl.:(xt) = a!,a(xl)
EolAs | Y] oe.(1) a,(1) '

IL(X:) = E(X: | Y]
or

- - EO[Z'AO | ¥.] - a..(Z,) - 01.(2,)
nl(xl) = E[Za ly'] = EQ[A, Iy,] - 0".(1) = d.(l) .
22

By a similar technique (see A-8),

00a(X2) = 010(X0) + [ lo0a(haX0) + ora(a)ldW,

+ [0 (e = X + - (eNldas (23)
is obtained, where < Z,W >= [§ audu,[Z,N) = f§ ¢.dN..
A direct derivation of (22) is also possible from the definition
04(X,) = Eo[Z,A, | Y.] using the same approach (see A-9).

8 Dj .

Starting with the general models of stochastic systems
( mixed-type of states and observations), we derived the
normalized equations for filtering, smoothing, and predic-
tion of general stochastic equations using semimartineoale




decomposition techniques, We also showed that the corre-
sponding unnormalized equations could e derived in two
different ways(indirect and direct derivation). Notice that
the same derivation methods result in similar structure in
forms. Thus the optimal estimation problems are unified in
these frameworks.

7 Appendix

A-1: the derivatior. of equation (13)
Conditioning (9) with respect to ¥, (7],

LX) = To(Xe) + [ Tu(fu +w)du +my (24

where m; is a Y, -martingale and thus it has the unique
representation vith respect to innovation processes 14 and

h ¢ ]
rm=/o K..dvu+[) R.dp,

for Y,-predictable processes K;, R;.

Remarks: the existence of m; can be easily shown. And
in equation (24), the optional or predictable projections onto
observations, denoted by IT;(X,) and IL,_(X;) respectively,
should be taken. However, it can be shown that the follow-
ing equality holds except on the set of dtd P(w) measure zero:

[/t rdde = [ T 2

Thus (24) can be identified under either projection. For
details, refer to [7, p253]. In what follows, conditioning on
Y. ioplies the optional projection or predictable one as the
case may be. By using Theorems 1 and 2, this martingale
representation theorem with respect to innovation processes
can be proved. Although 1, and y; are Y,- martingales, we
can not derive (24) by a direct application of Theorem 2
because in general, ¥ O o(v, 40,8 < ¢). In [7), one way
around this difficulty is to take a measure transformation
and under the new measure to get the representation with
respect to observations and then innovations. For details
refer to [7,p264].
To find X, applying the product rule to X;W, ,

- - {3 - ¢
X, = /: Wo(f du+dM +dH,}+ [, X(hydu+dW,)+ /o a,du.
Conditioning on Y; and using the Fubini-type theorem,
EX, | Y = (X)W, = [ T(Xehods + [ Ta(ou)ds

+(Ys — martingale).
This equation shows that IT,(X;)Y; is a special semimartin-
gale which is the sum of a Y- martingale and a predictable
bounded variation process, and furthermore the decomposi-
tion is unique [1. Whereas, from (11) and {24)

MO = [ T(X) Wt [ Wl (X [ 4 < 100, W >, .

Noting that d < [I(X), W >¢= Kidt,
m(Xw, = [ " ML (X T (ha) du+ i ' Kudu+(Y~martingale).

Since the decomposition is unique, comparing the bounded
variation terms, we have

K. = nq(xohu) - n«(xu)nd(hu) + nu(“‘)‘
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Similarly, for Ry, applying the product rule to X, N,,
¢ ¢ - -
XNy = [ Xum (Audu-+da)+ [ Ne-lfudurdit+aB e A *bedodu.
Conditioning on Y, and using the Fubini-type theorem,
] ¢
MM, = [T Xd + [ NIL(f, + v)du
+ fo ' Iu(buAs) + (Y — martingale).
On the other hand, from (12) and (24)
1 t

(XN, = [ T (XN, + [ No-dm(x)+ /o' d[TI(X), N),.
Observing that d[II(X), N], = RdN,,

(XN = [ T (XML (M)

+f * Rl (\)du+ f  NuTLo(fu+n)du+(Ys-martingale).

The uniqueness of decomposition yields
Ry = [Mae (A)]7H{TLu- (A Xo)=Mae (M) Ly (X)) + 1M (buda).
F'mally,.aubatituting K. and R, into m, results in (13).

A-2: the derivation of o;(1)

Taking conditional expectations of A, under Py and applying
the Fubini-type theorem,

BolA] = 1+ [ Eolhuha | YWt [ Belhun(0u=1) | Yuldes.
The result follows.

A-3: the derivation of 0;(X;)
From (14) and (24),

Uc(xt) = nc(xc)ic
= To(2X0) + [ T (XM (ho)hudWe + (T (30) = 1) ]

+/°‘ le(fu)du + y(v4)du + K,dvy + Rodu,

+ [ KL (h)iude + [T - D]ERLN..
With straightforward calculations, we get the equation (15).

A~: the derivation of equation (17)
Taking conditional expectations of X,W, with respect to Y,

(X )Ws = [ TL(Xuhu)du + (Y ~ martingale).
However, from (11) and (16)
X)W, = [ MK (hu)dut [ Kot (Ye-martingale).
By the unique decompasition of a special semimartingale,

Ko.u = n«(xohu) - m(xl)m(h‘)'
Similarly, conditioning X, N, on ¥,

IL(X.)N, = / "M (X,2) + (Y ~ martingale).

However, from (12) and (16)




M(X.)N, = IL(X.)N, + / Moo (X)L (A)du

+f ' RyuTlo- (M)du + (Y — martingale).

Equating the bounded variation terms of two representa-
tions of H.(X,)N.,

Ryu = [Mu ()] M- (X,A4) = T (X)Me- ().
Then the result directly follows.

A-5: the derivation of equation (18)
From (14) and (16),

0,4(X,) = M (X.)A,
=IL(X,)A,+ / ' M- (X,)dA,-+ / ‘ AT (X,)+ / ‘ d[1(x,), Al..
Noticing that

d[n(x ) A]u = nu(hu)AuKa udu + A«(nu(lu) - I)Ro udNou
With some manipulations,

Tat (xa) = nl(xl)il + /: &«n«(xnhu)dwu
+ [ Bur [ = )X
The result immediately follows.

A-6: the direct derivation of (18)

Xohe = Xobot [ Xodte = 8%t [ XA Wt A0 1)da].

Therefore
Uo,t(xl) = EO[X-At I y‘]

= Bl XA, | Yl + [ EolAuhaX, | YuloW,
+ [ BlXoAu (0 = 1) | Yulda.
This completes the proof.
A-T: the derivation of equation (21)
Applying the product rule to Z,W,, and conditioning on Y,
produce
(X)W, = jo * Lo(Zehe)du+ /o * (o) du+({Y, —martingale).
From (11) and (20),

MW, = [ Wedll(Z2) + [ Tu(Z)dW, + [ Kusdu

= /o * Lo(Zu) T (he)du + /o * Kusdu + (¥, - martingale).
Comparing the predictable processes,
K= /o * Mu(Zuhe)du ~ /o " M (Z) M (hu)du+ /o * Mu(a)du.

Similarly, applying the product rule to Z,N,, and projecting
this onto the observation o-fields produce

E[ZaNa I y:l = H,(Xg)N.

= /o " E[Zu-Ay | Noldu+ /o " ML (6uho)du + (Y, — martingale).
From (12) and (20),

(XN, = ["Tue (X)dN+ [ Noed(X0) + [ Rusd,

= A " M- (XML )du+ /; " RusTl-(A)du-+(,—martingale).
The unique decomposition theorem gives

= [Mae (A)] 7 M= (A Z4) =T (X)) TLe- (M) +T1e- (6 )]
Now,
L(AuZ.) = ERE(X | 7] | Y] = EAX | Wi} = (A Xe).
Therefore, from K, and Ry, equation (21) follows.

A-8: the derivation of equation (23)
From (14) and (20),

Gu(xt) = nn(xt)la =
Mo(Xo)+ [ hue [Kusdvut Rusdisal+ [ Ten (KRt [ dIT(X0), e
Observing that
dT(Xy, o = AuTLu(ha) Kusdu + Ao (TLu(As — 1) RysdN.,
with some computations, we get the equation (23).

A-9: the direct derivation of equation (23)
From (22) and the product rule,

ZA, = Zoho + [ Zu-dho+ [ "A-dzo+ [ dia, 2.

Note that under Py, [A, Z], = 0. Applications of the Fubini-
type theorem gives (23).
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ABSTRACT

This paper considers a singularly perturbed hybrid system whose
state equations depend on a near decomposable finite state Markov
process with fast transitions. The limiting behavior of the fast and slow
mode subsystem for the duration of intervals of fast transitions within
each group is investigated. The resuits are shown to hold when the
process is near decomposable, ergodic, time-reversible and stationary,
and the values of the system matrices within each group commute.

L. INTRODUCTION AND PROBLEM FORMULATION

This paper examines the limiting behavior of a singularly perturbed
hybrid system with switched parameters which depend upon a near
decomnposable finite state Markav process (FSMP). The state space of a
hybrid system is a cross-product space of a Euclidean space and a finite-
state space. Basically, hybrid systems are linear, piece-wise constant,
time-varying systems, which are switching among a finite number of
constant realizations. Hybrid systems have already been considered,
and their properties are well documented(1]. The use of the aggregated
models to describe global {eatures of singularly perturbed FSMPs is
studied in (2]. Preliminary investigation of singulatly perturbed hybrid
systems and singulariy pertutbed FSMPs is reported in {3]. Here we
extend the latter resuits, but consider the decoupled case where the
switching is a near decomposable FSMP as discusaed in [4].

The system models under consideration are assumed to have the
following state equations:

2{t) = Afr(t)]2(2) (1)
BE(2) = As[r(t)]2(0) 2)

where i > 0 is a small parameter, z(t) € R™ represents the slow mode
of the system and z(t) € R' the fast mode, the process r(t) is the
form index which takes values in § = {1,2, ..., M} and determines the
system model at a particular time. The process r(t) is modeled as an
FSMP which contains N groups of strongly interacting states, where
group j consists of n; fast states and 2"_1 n; = M. Macrices 4,[r(?)]
and A2{r(t)] are random through their dependence on the values of the
process r(t). The current values of A;i[r{t)] is denoted by an index,
for example, for i = 1,2, Af,, will denote A;(r(t)] when r(t) = m €
group j, j = 1,...N¥, m=1,..,n;. Let the evolution of the process
r(t) satisfy

L PNSF +G) @)
where P(t) is an M x M transition probability matrix at time t. It is
assumed that 0 < ¢ € 1, matrices F, G and 1 F + G are generators
such that the process r(t) has a single ergodic class. Furthermore, let
each of the N groups be a FSMP with a single ergodic time-reversible
ciass(5]. The gene-ator of the jth group F; is the jth block in the block-
diagonal matrix F. This paper considers the stati y case, namely
that the process r(t) has reached its steady state.

The following is the outline of the paper. Section II summarizes
asymptotic behavior of a near decomposable FSMP. [n Section [II,
the approximate model #;(t) for the siow mode subsystem z;(t) for
the duration of intervals of transitions among the fast states of group
j is derived. The probabilistic averaging procedure is adopted. The
mean-squared error between Z,(t) and z;(t) is studied. In Section [V,
we study the limiting behavior of the fast mode subsystem when both
u and ¢ tend to 0. 3ection V considers an example to illustrate the
methods used in Section [IT and [V. Section VI concludes the paper.

! This research is supported by the U. S. Air Force under grant AFOSR-89-0241.
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. ASYMPTOTIC BEHAVIOR OF A NEAR DECOMPQSABLE
FSMP

In this section we summarize the asymptotic behavior of a near de-
composable FSMP. Since the process r(t) satisfies the MSST (muitiple
semistability)condition{2], it has only two time scales. In order to con-
struct an asymptotic approximation of the process r(t), one establishes
the following proposition: '

Lemma l Let[] = lim¢—oo ezp(F£). Then
[1 = diag(T],, - HN

With I'L =1;- E,, J=1,.., N, for some nj-dimensional row vector
E;j such that E; = [ej1,...,ejn;] and Ej-1; = 1.

Furthermore, define the Mx N matnz V and the N x M matriz U
as follows:

V = diag(1y,...,1n], U = diag{E,, ..., En]. (4)

then
VU=[LUV=TI
where [ is an N x N identity matriz.

We now use [], V and U to construct a uniform asymptotic approxi-
mation of the process r(t) as shown in the following lemma:

Lemma 2 Asssme that 0 < ¢ < 1, then
P(t) = exp(F(t - to)/)+
Vezp(UGV(t = to)U — [ +o(1) ®)
sniformly velid fort > to.
Obviously, when ¢ — 0, the process r{t) can be replaced by an

aggregated process #(t) taking values in $ = {1,...,N}. Let B(¢) be
the transition probability matrix of the process #(t). Then

P(t) = ezp(UGV(t - to)). for t 2 to (6)
and UGV is the generator of the process #(t) and
P(t) = VB()U, for t > 1o U]

Note that the process #t) is stochastically continuous and has a single
ergodic class such that

Ji&ﬁ(t):l-[el,....e[v] (8)
Thus Equation (7) can be interpreted as follows:

Pr{r(t) = m € group jir(te) = k € group i}

= ejm - Pr{f(t) = jlF(to) = i] + o1). )
for t > tq and

lim Pr{r(t) = m ¢ group j

Ir(to) =k € group i} =¢; -¢jm (10)

where ¢;s i3 the component of the ergodic probability vector ¢; corre-

spoading to state m.
Furthermore, if we express (3) in the fast time scale 7 = (t = t3)/¢,

we obtain

Lemma 3 Let r = (t - tg)/¢c. We have




P(r) = P(er) = exp(Fr) + O(e). (11

Simularly, the equation for the transtion probability matriz of r(r) be-
comes
dP(r)
dr
From (11) and (12) it follows that the influence of weak interaction ¢G
in(12) will become significant after a long period of time r. Assume
that (0) € group j, then we have

(12)

= P(#)(F +¢G)

Pr{r(r) = n € group j|r(0) = m € group i}
= P +0(0)

where pi, . is the (m, n)th element of ezp(F;7).

In this work, the steady-state distribution of the process »{t) will
be peeded. This probability, from (10), is defined by ¢;jejm, J =
1,....,N,m = 1,...,n;. Henceforth, it is assumed that the process
r(t) has reached its steady state, i.e.,

(13

Pr{r{t) = m € group j] = ¢jejm (14)

With the above assumptions, we conciude that in the fast time scale
. 7, 0 < ¢ <1, jumps among different groups occur after a very long
pericd of time 7 30 that the following results are obtained:

Lemma 4 Since group j is & finile ergodic stationsry time reversible
Markov chain, then the expectation of A[r(T)] in growp j is given by

A} = E{Ai[r(r)]ir(7) € group j}

ot}
= Z C,'NA;,‘

mul -

(15)

end its awtocorvariance funclion
¢i(7) = E[A[r(n)]Ai[r(r + 2)]ir(r)

and r(r + 8) € group j] — (5})’ . el

Ny Ry

= T T Almtim(Paa(r) = eia)aha

mmlnsi

(16)

We next consider the additive process

Yi(r) = /o Ar[r(s) € group jlds. an

For large ¢, we would expect that the process Y;(r) is asymptotically
normal in distribution, and satisfies a central limit theorem. Before
doing %0, the next lemma is required:

Lemma 5 Let &), F; the fundamental matriz of group j and C; be
defined as follows

QJD = diag[e,-l. ey 2,'.‘,], F) = [F,‘;'J

Fhn = [ (Phalr) = ia)ar
end
Cj =/° ¢j(r)dr = [A}y,..., A)a %

[eoF @ Iaxall(A] )T, ... (4)4,)7]T (18)

where @ denotes the Kronector product[6].
Then C, 1s strictly pomizve definste wniess A,‘,,‘ is independent of m
and C; 13 zero 1f Al,, 15 imdependent of m.

The positivity of C, has & natural meaning in that it corresponds to
the variance of Y;(r) in the central limit theorem.

Lemma 6 LetY;(r) = fo' Ay[r(s) € group j]ds. Thea Y;(r) 12 asymp-
totically normal in distribution for large v and satisfies the cestral limst
theorem, te.,

Y,(r)-N(/i]‘rJC,r), as T — 0o. (19)
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Meanwhile, Y;(r) also satisfies a weak law of large number such that

Y(r) ¢ &
—’-r— = A} (20)
For proof of the above Lemmas one can see see (2], (p. 118, [5]] and [7].

The central limit theorem is useful in that we exploit it to derive
the approximate mode| of the slow mode subsystem.

II1. SLOW MODE SUBSYSTEM

This section considers the limiting behavior of the siow mode sub-
system. Let z;(t) denote the state of the subsystem when r(t) takes
values in group j. The trajectory of z;(t) is based on writing the solu-
tica of z(t) as a function of the fast states in group j for the duration
of the intervais of transitions among the (ast states of group j. The
solution z;(t) can be considered as a standard state equation solution
of a time varying linear system. The time varying nature stems {rom
the dependence of the system matrices on the different values of the
fast states of group j. In what follows we use probabilistic averaging to
derive the approximate model for z;(t). Given the group of the pro-
cess r(t) (i.e., group j ) and the state of the systems (1) at time ¢ (i.e.,
z;(t)), the expected state at time ¢ + A where A is of order ¢ is to be
computed. Thus

Zi(t+ A)= E{zj(t+ A)lz;(t) E.grwp 7}

ng :
= ) exp(A]nA)(eime;/e;)z;(t)

n N '
=Y exp(AlmA)ejmz;(t) (21)
m=l

From Equation (21) one deduces the dynamics of Z;(t) as-
24(t) I
= lim Ez;(t + &) - 2;(t)lr(t) € group j}/A

"y
=(Y Almejml3;(t)

muml
= A}z;(1)

where A} is the statistical average value of A,[r(t)] when r(t) switches
among tfle fast states of group j. In what follows we shall show that the
mean-squared error between Z;(t) and z;(t) tends to zero as ¢ tends to
zero.

Theorem 1 Suppose that A}, A},
,i,' is stable. Then

Jim, ElIZ;(8) = =5 (01

= A}u“}mr mn € {l' vy ""] end

Ir(s) € group j,s € [to, 2] = 0 (22)
where || - [} demotes the Euclidean norm.

Proof. Assume that the process r(t) switches to group j at time t5. We
express the systems (1) in the fast time scale r = (¢ — ¢9)/¢ to obtain

X,(r) = eA[H(nX; (7). X;(0) = #(to) (23)
With the assumption that A}, A}, = Al A}, we bave
X;(r) = e Jo Arlriremens jle
= c'yl(')zi(lo)
On the other hand, we express ,(t) in the fast time scale as
X;(7) = A7 2(to) (24)

To prove the theorem, there are two cases to consider:
Case I: Let A}, depends on the value of m. The difference between

X,(r) and X,(r) is given by




X,(r) = X,y (7) = [ei(m=41m) _ 1)edirz;(tq) (25)
For a given t, r — o0 a3 ¢ — 0. It follows that

E[]le"'"""‘-;" - 1"21

trace E[e"(y"""i;" = et H(T)=Alr) _ 1

T (@ac,var - (EE i/

nueven>0
=0(e)

and [jei"]| < 0. Henee,
EQIX;(r) = X;(r)i"Ir{s) € group j. s € [ta.1])
= 0(e¢) (26)

Taking the limit ¢ — 0, we observe that the right-hand side of Equation
(26) tends to zero. A change of variabie yields the resuit.

Case II: Let A}, be independent of m and A}, = Allm=1,...,n
Lemma 5 thea yields

Al=A}landC; =0

Obvicusly, X;(r) = X;(r), i.e., there is ao error between )?,(r) and
X;(r).

’(Tgxe resulting approximation iraplies that the siow mode subsystem
can be approximated by a hybrid system depending on the aggregated
Markov chain 7(t) taking values in S. The system model of the hybrid
system at a particular lime t is a statistical average of the system
matrices over their values based on the group that the process r(t)
takes. :

IV. FAST MODE SUBSYSTEM

In this section, we study the limiting behavior of the fast mode
subsystem:
pi(t) = Aq[r(t)]2(t) (m
Assume thas ||}, = O(1), j=1,....,N, m=1,...,n; and that
r(t) = m € group j. To analyze the state z(t), the stretched time-scale

8, where & =(t = t5)/u, is used. Bence, expressing the systems (27) in
the stretched time-scale @ yields

2(0) = A1[r(9)]2(9), 2(0) = 1(to)- (28)
Similarly, the equation for the transition matrix of r(#) becomes

dP(8) [
—— =PUO)SF+G) PO) =1 (29)

The limiting behavior of the systems (28) depends on the relative size
of u and ¢ aa they both tend to zero. Thers are three cases to consider:
Case I p = of¢) and limeg & = 0.
In this case we have

L =00, PO) = 1. (30)
Thus, in the stretched time-scale 4, the transition probability matrix
tends to a constant. Since P(4) is an identity matrix, we observe
that trsnsitions among states of the process r(#) are very slow, ie.,
r(0) = m Egroup j implies r(9) = m € group j for all § when ¢ — 0*.
Under this condition the system matrix for the state variables z(t) is
A}, when r(0) = m € group j. Similac to Section II, the solution of
2;(t) of (28) is

Z,(8) = ezp( A} 8):(10) (31
which when transformed to the normal time scale t yields
2(8) = ezp( A} (t = to)/u)zi(ta), for t 2 to. (32)

If all the values of 42, are stable, then z;(t) can be approximated by
(32). The foilowing theorem summarizes the case.
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Theorem 2 Assume that u = o¢) and limegu/e — 0, all the values
of A},, are stable, and r(tg) = m € group ;. Them as ¢ — 0

%(8) = ezp(Aln(t — to)/b)zj(ta). for t2 to. (33

Case II. s = O(¢) and lim,—o /¢ = & where k = O(1).
In this case we have

dP(8 :

__dz ) = PO)(EF +0(e), P(O) = 1I. (34)
From (34) it follows that , in the stretched time-scale 9 as ¢ — O,
Do jumps occur among groups and r(d) stays within group j when
£(0) = m € group j. While r(t) takes values among the fast states
of group j, then 3;(t) behaves approximately as any time invariant
systems with coastant system matrix heid to their values at the last
transition. The following theorem addresses the problem for the case.

Theorem 3 Assume that u = O(¢) and limgu/e — k where k =
O(1). Denote

ny
A} = Z A}me,-...

ma)

Then

1. In the stretched time scale 8, 2;(9) is epprorimately modeled as
an qutomomous Aybrid system (29) depending only on the fast
states, of grosp j, whose transition probedility matniz is given by

P/ (8) = exp( F;9)

2. If the values of .i; are stable, then the solution of z;(t) is uns-
Jormly asymptotically stable.

Note that logarithmic norm(1] can be used to check the stability con-
dition of A2.

Case Ill. 4 = ®where ) < a < land lime—.q /¢ — oo.

Similarly, we have .

LD o P F +40) PO =L (35)

which implies thst transitions among the Markov states within groups
are very fast and that transitions among groupe are very slow as ¢ — 0.
Thus, r{9) only takes values of group j if r(0) = m € group j and Z;(8)
can be approximated as an averaged system with a constant system
matrix.

Theorem 4 Suppose thet u = ¢® where 0 < a< 1 endlim,_ou/c —
o0 and r{ty) =€ grosp j. ‘Assume that all values of A} commste with
esch other and are stable. Then

1. Z;(0) can be spprozimated as an aversged system whose dynam-
ical equations are described by
2,(0) = A22,(0), 2,(0) = z(t0) (36)
2. The meen-squared ervor between Z;(0) end Z;(8) tends to zero
o8 ¢ tends 1o zero.

3. The solution of Z;(8) is wniformly asymptoticaily stable.
V. AN EXAMPLE

An example to illustrate the method in Section II and III is demon-
strated here. The system is given by (1)-(2) where

1 -4]"‘"‘[ 1 -s]

A} =

h

-




1.5

-10 2
-

.4§,=[ . ..4;,:[ o 2

and the FSMP r(t), shown in Fig.1, which consists of two groups. each
of which contains two strongly interacting states, has the following
generators:

11 0 0
1 -1 0 0
F=1 49 ¢ -2 2/
00 3 -3
90 0 0
0 -1 1 0
=00 o o

20 0 -2

Hence, from the definition of j} and j;, j=1,2, we have

a_[-25 2] n_[-84 1

"‘l'[ 1 -4.5]""[ 2 —44
a_[-44 351 ;_[-88 18
Ai= [ L1 -il2 ] A3 ‘[ 18 =52

Fig.2 and Fig.3 show the sample trajectories of z1(t) and (t),
when the initial conditions z;(0) = (2.0,3.0]7, under three cases: (i)
¢ = 0.1, (ii) ¢ = 0.01,(iii) ¢ = 0.001. Obviously, the error between
z1(t) and #:(t) is smaller as ¢ becomes smaller. Similarly, Fig.4 shows
the sample behavior for z;(t) and (1), with z,(0) = (2.0,3.0]T and
€= 0.1. The errors do become smaller when ¢ goes .

V1. CONCLUSIONS

This note considered the limiting behavior of a singularly perturbed
decoupled hybrid system whose state equations depend on a nesr-
decomposable finite state Markov process. The limiting system be-
havior of the slow mode subsystem for the duration of intervals of fast
trapsition within each group can be approximated by an averaged value
of the system matrix over all their values based on the fast states of
the group. The limiting behavior of the fast mode subsystem for the
duration of intervals of fast transitions within each group depends on
the relative size of u and ¢ when both u and ¢ tends to zero: (i) the
system can be approximated as a time invariant system with the con-
stant system matrix held to the value at the initial transition when
# = o(¢), (ii) the system can be modeled as a hybrid system depending
only on the fast states of the group when u = O(¢), (iii) the system
can be approximated as an averaged value of the system matrix over
all their values based on the fast states of the group when u = ¢® where
0 < a < 1. The results need two crucial assumptions, the ergodicity
, stationary distributioa and time reversibility of the process, and the
fact that the values of the system matrices within each group commute.
The results hold even if the aggregated process has an sbeorbing state.

Additional work is needed concerning the relaxation of the restric-
tions of commutation of the system matrices within each group. The
Baker-Campeli-Hausdorfl (BCH) formula {1,8] appears to be a promis-
ing festure in this direction.

Finally adapting the results of the note to the more general singu-
larly perturbed (stochastic) hybrid systems where the switching is a
near-decomposable finite state Markov chain may be useful.
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ABSTRACT

This paper considers a singularly perturbed hybrid system whose

state equations are governed by a stochastic switching process, which
is singularly perturbed and is modeled as a near decomposable con-
tinuous time finite state Markov chain (FSMC). The decomposition
of the system and the switching process together into slow and fast
subsystems is investigated. An approximate model for the slow sub-
system over the interval of fast transitions within each group is de-
rived and the mean-squared error between the model and the actual
subsystem is quantified. The stability of the slow mode subsystem
is studied and two stability criteria are introduced. The behavior
of the fast subsystem depending on the relative size of perturbation
parameters is analyzed. Finally an example is used to illustrate the
aforementioned techniques.

1. INTRODUCTION AND PROBLEM FORMULATION
1.1 Introduction

This paper studies the asymptotic behavior of the trajectory of
a singularly perturbed hybrid system whose state equations depend
on a near decomposable continuous time finite state Markov chain
(FSMC). The state space of a stochastic hybrid system is a cross
product of an Euclidean space and a finite discrete state space. Ba-
sically, stochastic hybrid systems ate a special type of linear, piece-
wise constant, time varying systems which switch randomly among
a finite number of linear time invariant models. The switching be-
haves like an FSMC. Such systems have been successfully used to
model pilot commands in target tracking, isolation levels of solar
receivers, and systems subject to sudden changes in their structure
and parameters which are caused by phenomena, such as compo-
nent/sensor failures or repairs, abrupt environmental disturbances
and changing sy<tem interconnections in manufacturing systems and
large scale flexible structures [1]. This paper is concerned with the
asymptotic approximation of singularly perturbed stochastic hybrid
systems when both the continuous states and the switching process
are singularly perturbed. The study of systems of this type is moti-
vated by new applications, such as analysis of singularly perturbed
systems containing quantized elements or on-off control {2}, and sim-
plified filtering schemes for singularly perturbed switched parameter
systems [3}.

Singular perturbation methods in [4-6] are used in the paper to
decompose the continuous states and the switching process together
into slow and fast mode subsystems. The methods alleviate the prob-
lems of stiffness difficulties resnlting from the interaction of slow
and fast dynamics. Singularly perturbed FSMCs and singularly per-
turbed stochastic hybrid systems have been investigated by several
researchers in [3.7-10]. Aggregation methods were used to describe
global features of singularly perturbed FSMCs (7-8]. In [9] the au-
thors developed aggregation and averaging ideas to deal with approx-
imation of stochastic hybrid systems in which the switching process
depends on its current discrete state and the continuous states. An-
other study 3] examined the limiting behavior of a class of singularly
perturbed stochastic hybrid systems where the switching process is
singularly perturbed and independent of the continuous states. The
anthors in {10] have generalized the results of {3] by allowing a much

broader class of the switching process which consists of many groups
of strongly interacting discrete states. In (10] an approximate model
for the siow mode subsystem within each group is derived base on the
probabilistic averaging procedure. Its accuracy is quantified with the
restriction of commutability of the system matrices of all realizations
within each group.

Our aimns here are to apply the aggregation method to derive an
approximate model for the slow mode subsystem over the interval of
fast transitions within each gronp of the switching process, to quan-
tify the accuracy of the approximate model without the restriction
imposed hy the proofs derived in [3,10], and, finally, to analyze more
general singularly perturbed stochastic hybrid systems.

T This reasarch was supparted by the U. S. Air Force under grant AFOSA-£9.0241

1.2 Problem Formulation

The system models under consideration are assumed to have the
following state equations:

£(t) = Ai[r()}=z(t) + Aralr(1))2(t), 2(to) = 2o, (1)
pi(t) = Anlr(e)lz(t) + A2[r(1)]2(t), z(to) = 2. (2)

where g > 0is a small parameter, z(t) € R” represents the slow mode
of the system and 2(t) € R" the fast mode, and the process r(t) is the
form index (or plant mode) which takes values in S = {1, 2,....,m}
* and determines the system model at a particular time. All matrices
. are of proper dimensions and are random through their dependence
" on the values of the process r(t).
' We further assume that r(t) can be modeled as a near decompos-
able FSMC which contains n groups of strongly interacting states,
) where the ith group consists of n; fast states which form the subset
18 = {Ni+jlj=1,..,n}, where NV; = Z;‘;’l ng, i>22and M = 0.
. Note that 3", n; = m and Ui; 5i = S. The current values of the
“ system models are denoted by an index, for example, ¥4;; will de-
note Ax[r(1)] when r(t) = j,j € Si, where k = 1,2,12,21. Let the
evolution of the process r(t) satisfy

dP(2 1
PO piyirio) @)

where P(t) is an m x m transition probability matrix at time t. It is

assumed that 0 < ¢ < 1, matrices F, G and 1 F + G are generators
such that the process r(t) is irreducible. Furthermore, let each of the
n groups be an irreducible and time reversible FSMC with generator
F;. The generator F; is the ith block in the block-diagonal matrix
F. This paper considers the stationary case, namely that the process
r(t) has reached its steady state. It is also assumed that z(t), z(t)
and r(t) are perfectly observed.

The behavior of the overall system depends on the relative size
of u anf.l € as t.hey both are sufficiently small. There are three cases
to consider : (i) u = o(¢€), (ii) p = O(¢), (iii) ¢ = o{u). Furthermore,
due to the possibility of transforming the system with Eq. (1)-(2)
into a decoupled system, we shall focus on the decoupled case (i.e.,
Aua[r(2)] = 0, and Ag{r(t)] = 0), and then extend the results to the
coupled case.

The following is the outline of the paper. Section II presents the
basic mathematical tools for the behavior of a near decomposable

FSMC and the properties of additive processes. Section IIl studies
the limjting behavior of the decoupled slow mode subsystem. An
approximate model for the slow mode subsystem over the interval
of fast transitions among the fast states of each group is derived in
Section 3.1 based on the aggregation method. Section 3.2 quantifies

" the mean-squared error between the approximate model and the ac-
tual system. The asymptotic stability of the decoupled slow mode
subsystem is explored in Section 3.3. In Section IV, the limiting be-
havior of the deconpled fast mode subsystem is investigated when

“both u and ¢ tend to zero. Section V examines the coupled case.
Section VI considers an exaraple to illustrate the methods used in
Section V. Section VII concludes the paper.

II. MATHEMATICAL PRELIMINARIES
This section surveys some notations and results concerning the
asymptotic behavior of near decomposable FSMCs, and the prop-
ertiea of additive processes. These results play important roles in
studying the asymptotic behavior of the trajectory of the system

given by Eq. (1)-(3).
2.1 Near Decomposable FSMCs

In the following the asymptotic behavior of a near decomposable
FSMC is summarized. There have been a number of studies in the




literature concerned with the asymptotic approximation and aggre-
gation of a singuiarly perturbed FSMC [7-8]. The fast transient of .
the process r(t) is formed of separate transients within the strongly
coupled groups. Over a longer period, each group of the strongly -
coupled states can be treated as an aggregate state.
Let the switching process r(t) satisfy the MSST (multiple semista- ;
bility) condition[6]. Thus, two time scales is sufficient to describe the i
global evolution of the process r(t). To analyze the process r(t), one
needs the following notations [6,10] : i
Let [T = lim, oo exp( F1). Then
ﬂ = 'li“g(nl"_"vnn] . :
where []; = 1 - E;, i = 1,...,n, E; is an n;-dimensional row vector
and E; = [e;].7 € i, and 1; is an n; dimensional column vector
with the same elements 1. Furthermore, define an m x n matrix V
and an n X m matrix U as follows:

V =diag(ly,...,1,),U = diag[Ey, ..., E,). (4)

then VU =[], UV = I, where [ is an n x n identity matrix.
For fast transient analysis of r(t), Eq. (3) can be expressed in
the stretched time scale 7 = 5 to obtain

P(r) = eF". (5)

For aggregate analysis of the process, r(t) can be replaced by
an aggregate process #(t) taking values in § = {1,...,n}. Let P(2)
be the transition probability matrix of the process 7(t). Then the
evolution of the aggregate process 7(t) is governed by the following
equation,

P(t) = POUGY, for t > to, (6)

and UGV is the infinitesimal generator of the process (t) . Further,
the relation between P(t) and P(t) is given b+ ;

|

P(t) = VP()U, for t > to. M

Note that the process #(t) is stochastically continuous and has a
single ergodic class such that ’

Jim P(t)=1-[¢1,...,5n) (8)[
where é; is the ergodic probability of the aggregate process #() cor- |
responding to the state 1. f

In this paper, the steady-state distribution of the process r(t) will :
be needed , i.e., ‘

Prob[r(t) =j e Si] = é;e;;.

|
2.2 Additive Processes :
i

In what follows additive processes on each group of the process
r(r) in the stretched time scale r are introduced [10]. Earlier ma- |
jor wc ks on additive processes appeared in [11,12&. Let r(r) € S;.
Define the function a},,[r(r)] as the (kJ)th element of the matrix I
Ai{~(r) € Si]. The current value of a!,,[r(r)] is denoted by aliy
when r(7) = j € Si. An additive process is defined as follows: '

Yiim(r) = /o " & lr()lds. !

For a sufficicntly large r, one would expect the process Y; ;i to be i
asymptotically normal in distribution and to satisfy a central limit ]
theorem: i

Lemma 1 Let Yi,(r) = [§ Ay[r(s) € Silds, and Yy ; ;(7) denote
the (k,i)th element of the matriz Yy ;(r). Then all elements Yiim(7)
are mutually independent, asymptoticaily normal in distribution Jor .
a sufficiently large T and satisfy central limit theorems: ;
|
Yiim(r . !
1 cr ) - “ul_kl :

i .
- N(O,Zl\/'%), as 7 is suf ficiently large, (10)

where
'-'.!,u = E"‘.‘,u[’(')” r(r)e S} = 27:—.‘;\/)\.&1 C"j“.!,',w

The values of o},,, i = 1,...,n, are positive [10]. For proof of the
above lemma one sees [10), [11], [12, pp. 118-121}.

The central limit theorems are useful in that we exploit them to
derive the accuracy of the approximate model for the decoupled siow
mode subsystem.

II1. DECOUPLED SLOW MODE SUBSYSTEM
; This section considers the asymptotic behavior of the decoupled
slow mode subsystem given by

#(t) = Ar(1)|z(1), z(to) = zo. (1)

' An approximate model for the subsystem over the interval of fast

; transitions within each group is derived based on the aggregation

~method . Its accuracy, mean-squared error, is quantified by using of

‘the Magnus Expansion from Lie algebra which is known as the con-

_tinuous analogue of the Baker-Campbell-Hausdorff (BCH) formula.
Finally, the stability of the subsystem is discussed and two stability
criteria are introduced.

3.1 An Approximate Model

In general, the state variables z(t) are not Markovian. However,
the joint process (2(£)7, r(1))7 is a Markov process whose state space
.is R? x §. Here we formulate the joint probability density function
| {p.d.f) of (z(2)T, r(2))T which is denoted by 75(),
i iz t)dz = Prob{z < z(t) <z +dz,r(t) =j € Si}.  (12)
" Recall that the process r(t) remains in the ergodic distribution for
jall ¢ > tg. Let

l pii(z,t) = &ei5p;(2,1), (13)
], so that by our assumption

! /R Pz )z =1, i€ 3, jeSi (14)
‘I l

i

Ther define p*(z,t) = (p}y(z,2), .., Pirn(z,1))T- Obviously, the
evolution of §*(z,t) is governed by a forward Kolmogorov's equa-
tion (master equation) {13 ch. 3, 14, 15]. To simplify notation we

- introduce the matrix operator

* = diag{L};}, (18)
where each diagonal entry is described by
9
L5iFi(z,t) =~ ‘67{( YAijz (2, 1)), (16)
k=1 9%k

where (.)x denotes the kth component of the vector (.). Hence, the
forward Kolmogorov's equation is given by

a
P o (e + CFT 4 6Tz,

P(za, to) given. (17)

Because the exact solution of Eq. (17) is difficult to find, the
singular perturbation method is applied to derive asymptotic repre-
sentations of Eq. (17). This approach does not require the explicit
solution of Eq. (17), but rather, leads directly to asymptotic ex-
pansions of p*(z,t). The basic idea is to let 5*(z,?) have the outer
expansion

o0
p(z,0) = Z (kf)k(:,t)
k=0
! where ﬁl’(z,t) = (é,eup‘{,(r. 1), .o nlampPralz, ))T. ‘ '
Substituting this in Eq. (17) and equating the coefficients of like
i powers of ¢, we obtain

J
i

(18)

0(2): FT(2,0) = 0, #(z0,t0) = F'(z0, o). (19)
—0

0(1): FT§'(z,1) = 9’%;‘—‘) - Lz t)

-GT(z,1), (o, to) = 0. (20)



ok
O(): FTp(z,1) = 2200 5;‘"’ e AC)
-GTp*z, 1), p*(zo to) = 0,k =1,2,... (21)
The solutions for Eq. (19) is

Pz t) = pi(z.t), i=1,....n, j € S (22)

The solvability condition [16, ch. 15] for Eq. (20) is given by
9p(z.t) _ ..

0T O _ (2,0 - 6Tz, 1) =0, (23)
where

Fp:=0,i=1,..,n. '
Define

- q a n +N;
Lip(z.ty==-Y 7 Y e VAT, 1)

k=1 =N

With the notations £;, U and V, Eq. (23) can be rewritten in a.
matrix form !
- f

2 bz.0) = £°5(z,0) + (UGY)Ti{a, 1) (24)
where p(z,t) = (&151(2,1), ory EnBn(z, )T !
Equation (24) can be interpreted as follows : p(z,t) is the joint
p.d.f. of the approximate stochastic hybrid system

(1) = A [F(DIZ(1), E(to) = zo.

'
where '/, = STty e 1Ai; and #(1) is an aggregate FSMC with:
the generator UGV , and 7(t) remains in the ergodic distribution for’
all t > tp. In other words, in the time scale t, as ¢ tends to zero,
cach group of the strongly coupled states is aggregated to a single
state and the asymptotic behavior of the state variables within each:
group is approximated by a deterministic trajectory of a linear time
invariant system. ‘

To have higher order approximations, we need to solve for the
solvability condition of Eq. (21)

2D _ opt(e, 0 - GTpH.0) = 0.

!

(25)

(26)
wherei =1, .., n,and k=1, 2, ....

3.2 Mean-Squared Error

In this subsection the mean-squared error between the actual
states and the approximate states is derived. Let z;(t) denote the
state vector of the subsystem when r(t) takes values in S;. The
approximate model has deterministic trajectories £;(t) while r(¢) so-
journs in the gronp S;. The method used to find the mean-squared
error is based on the Magnus Expansion from Lie algebra known
as the continnous analogue of the Baker-Campbell- Hausdorff (BCH)
formuta [17-19]).

We next show how the Magnus Expansion and Lemma 1 can be
used to prove that z,(t) can be approximated by ;(t) over an interval
[to, Ti], where T: — tg € (0, ¢j,c is finite.

Assume that r(1) € S; at the time interval {{, T}]. Let 0 < § << 1
and 0 < € << § << Ti ~ tg. With the Magnus Expansion, the state
transition matrix of the slow mode system over the interval [to. to+ 6]
is given by

to+4
B(to. 1o + 6) = ezp{/ A(r(s))ds
1 th+d ')
+3 / [/|(r(s)),/lo A(r(s'))dslds

1 sto+s s o’
+5 /{ [A(r(3)), /«., (A(r(5'))ds’, /, A{r(s")lds"|ds)ds

+..) 127)

where the symbol [., .] is the commutator product or the Lie product.

To find the limiting behavior of the state transition matrix &(tg,
1o + §) as € tends to zero, we treat the terms in the exponent sepa-
rately. Then, combining all these together yields

B(to, to +8) = exp{* A6 + 6(%}’(/" “tA)+ 0N} (28)
Y| ¥ 8¢

I From Lemma 1 it follows that all elements of — are mutually in-

dependent, asymptotically normal in distribution with variance O(¢)
as ¢ tends to zero. Therefore, it is easy to verify

!i_r."‘)E{"zl'(t) - ii(t)“z} =0,t € [‘0’10 + 6]' (29)

To finish the approximation over the interval[to, T;] where T; - tg
is the sojourn time of r(t) in the group S;. we choose a sufficiently
positive small number 6 and a positive integer K such that §' < §
and T; - to = K&. The limiting behavior of the state transition
matrix $(to, T;) is computed by

lim &(to, T3) = lim &(to + K& o + (K - 1)8)

wB(to,tg +8') = & AKE = 1 AilTi-to), (30)
in the mean-squared sense. This implies that
tim E{lz:(t) - 201"} = 0, t € {to, T}). (31)

Note that if T; — to = oo, the mean-squared error at time 7} may be
unbounded even if ¢ tends to zero. However, it is well known [20]
that the irreducible FSMC, r(t), has 2 finite return time for each
state, i.e., T; — {p is bounded with probability one. The following
summarizes the result.

Theorem 1 Suppose that all values of 'A;;, j € S, are bounded.

Then the solution z;(t) to the problem Eq. (11) converges in the

mean-squared sense to the solution %;(t) of the approzimate model
, Eq. (25} as ¢ tends to zero, i.e.,

' lim E{llzi(t) - 2(1)I’} = 0, 2i(to) = £:(t0)

' for t € [to, Ti]) where T; — to is the sojourn time of the r(t) process in
\ the group S;.

- Note that Theorem 1 does not show that the approximate model is
1 valid over the entire interval [tg, o0).

* 3.3 Stability

In the subsection the stability of the decoupled slow mode sub-
! system is studied. The stability criteria are based on the logarithmic
, norm [21]. In order to derive the stability criteria, a brief introduc-
y tion to the notation of logarithmic norm is given as follows:
! Definition: The logarithmic norm associated with the induced ma-
triz norm || - || is defined by

! _ . M +hAj-1
B e @)

_ Two stability criteria are introduced to the decoupled slow mode
subsystem.

Theorem 2 The zero solulion of the slow mode hybrid system to be
almost sure ezponentially stable, it is sufficient to have

n Nitn;
EE.‘ Z e;;it( lA.‘,‘) <0, (33)
=1 Nit

" and necessary to have
n Nitn,
ZE,' Z eiji(— IA.',‘) > 0. (34)
=t N+l




IV. DECOUPLED FAST MODE SUBSYSTEM

This section examines the limiting behavior of the decoupled fast
mode subsystem given by

uz(t) = Az[r(t)]2(1). 2(ts) = zo0. (35)
Assume that all vniues of 24, are hounded, i € S, 7 €S, and
r(t) = j € Si . To analyze the state z(t), the stretcherd time-scale
8= (t — tg)/ps is used. lence, expressing the system given by Eq.

(35) in the stretched time-scale # yields

2(8) = A2[x(8)]2(8), Z(0) = 2. (36)
Similarly, the equation for the evolution of r(#) becomes
dpP(#
d; ) - POYEF +uG), PO)= 1. (37

Similar to Section 3.1, it is known that the joint process ( Z(8)T, r(8))
is a Markov process whose state space is " x §. Then we denote by

Py(Z.9),
P,(Z.8)=Prob{Z < Z2(8)<Z+dZ.r(f)=j€ S}, (38)

the joint p.d.f. of the process (Z(8)T, r(8))7T. Defining K Z. 9) =
(P1(Z, 8), ..., Pam(Z. 8))T, then the j{ Z.8) is governed by the for-
ward Kolmogorov's equation shown below.

aﬁ(ai'o) = CHZ,0)+ (EFT + uGT3(2,0),
€
#(Z(0),0) given. (39)

In the sequel singnlar perturbation methods are used to derive the
asymptotic expansion of p(Z.#). The limiting behavior of the solu-
tion of Eq. (39) depends on the relative size of 4 and ¢ as both they
tend to zero. There are three cases to be considered:

Case I. g =o0¢) and lim,o & — 0.

In this case we introduce the symbol i’ = g, u' tends to zero as
¢ tends to zero. p(Z,8) has the outer expansion

§2.0) =Y 3 (1)t 5 (2,0) (40)

k=04’ =g

where §** (Z,0) = [&1115%% (Z,8), .ocr Enenm P (Z, O)IT.
Substituting this in Eq. (39) and equating the coefficients of like
powers of ¢ and solving for the leading order term yields

P%(7,0) = ée,6(Z - 2(9)), (41)

where Z(8) = e "4:92(0). Equation (41) can be interpreted as fol-
low: if r(0) = j € S; and Z(0) = z(2g), the limiting behavior of Z(8)
is

Z(8) = e A%2(t5), (42)
which when transformed to the time scale t becomes
2(1) = ¢ TAult=) 1240y for t > to. (43)

If all the values of 24;; are stable, then z(t) can be approximated
by Eq. (43). The following theorem summarizes the case.

Theorem 3 Assume that u = of¢) and lim_op/e — 0, all the
values of ?A;; are stable, and r{to) = j € S;. Thenase — 0

2(t) = ezp( 2A;,(l — ta)/10)2(t0), for t 2 to. (44)

Case II. u = O(¢) and lim,_opu/e¢ — k where k= O’(l).

The case introduces the symbol & = k + O(u') where i’ tends
to zero as ¢ tends to zero. Like the first case, P(Z,8) has the outer
expansion given by Eq. (40). Substituting this in Eq. (39) a_.nd
equating the coeflicients of like powers of € and solving for the leading
order term vields

AF™(7.0)

g = CHZ.0)+ (kFT)i™(Z,8),

p°°(2(0),0) = 52(0),0). (45)

From Eq. (45) it follows that r(6) takes values among the fast states
of the group S, then z;(6) behaves approximately as any time invari-
ant systems with constant system matrix held to their values at the
last transition of r(#). The following theorem addresses the problem
for the case.

Theorem 4 Assume that g = O(¢) and lim,_op/¢ — k where k =
O(1). Then Z(8) is approzimately modeled as a hybrid system Eq.
(36) depending only on the fast states of the ith group with generator
F.k in the 8 time scale.

Case III. € = o{yt) and lim,_o /e — oo.
In this case we define the symbol ﬁ = u' where i’ tends to zero
as ¢ tends to zero. Let 5(Z, 8) have the outer expansion given by Eq.

(40). Repeating the same procedure discussed before yields the same
results in Section III.

Theorem 5 Suppose that ¢ = o(p) andlim_qu/e — 0o and r(ty) €
S and all values of *A; are finite. Then, fort ¢ {to, T3}

1. z{(t) can be approzimated as an average system whose dynam-
ical equations are described by

uE(t) = 24, E(to) = z(to). (46)

2. The mean-squared error between z;(t) and %;(1) tends to zero
as ¢ tends to zero.

V. THE COUPLED CASE

This section considers the singularly perturbed stochastic hybrid
gystem with Eq. (1) -(3). The purpose of this section is to define
a slow mode subsystem that describes the slow dynamics and a fast
subsystem that describes the fast dynamics. Their solutions are then
used to approximate z(t) and z(t) over the interval of fast transitions

- within each group. The decomposition of the system and the r(t)

process together into slow and fast subsystems depends on the rela-
tive size of u and e. First, consider the case u = o(€) and u = O(e¢).

The slow mode subsystem over the interval of fast transitions within
each group is approximated by a linear time-invariant system model.
The fast subsystem must be redefined over the interval of each fast
transition of the r(t) process.

Secondly, the case 0 < ¢ € pu <€ 1 is considered. In this case
the system can be regarded as a slow mode subsystem with system

- matrix
Alr(t)] = [ Al A1) (n)

with the initial conditions z;(1p) = 7o and zi({9) = zp. Since all the
submatrices are bounded, the solution to the system converges in the
mean square sense to an approximate model with averaged system
matrix

i
Ai = [ ni i (48)
[ "

when r(t) takes valuesin §; for to <t < T

To analyze the behavior of the system, it is assumed that all
the values of system matrices 24; are invertible and stable. Thus, a
desired slow dynamics is given by

2(t) = (VA =P ACA)T (M A)a(),

=1 L;z:(1), %i(to) = 0. (49)
and a desired fast dynamics given by
pigi= PAizgt), (50)

with the initial condition Z;,(ta) = 20 — [2A4;)! ' A;zo. Finally, the
solutions of Eq. (49) and Eq. (50) are used to approximate the
original slow and fast states.




Theorem 68 Assume that 0 < ¢ € p € 1, r(t) takes values in S;,

for t € [ta,Ti], and all the values of system maltrices *A; are stable
and invertible. Then

zi(t) = £:(1) + O(n), (51)

zi(t) = () ~ CANT T ADE(L) + O(p) (52)
where £,(t) and zj;(t) are respective states of the slow model Eq.
(49) and the fast model Eq. (50).

VI. AN EXAMPLE

An example toillustrate the method in Section V is demonstrated
here. The systems are given by Eq. (1)-(3) where z(t) € R, 2(¢) €
R!, and the switching process r(t), shown in Fig.1, consists of two
groups. Each group contains two strongly interacting states. Its
generators are given by

-2 2 0 0 00 0 0
|3 -3 0 o _fo-11 o
F=19 0 -2 20|00 o o

o0 3 -3 20 0 -2

The corresponding s—ystem matrices given by Eq. (47) of the states
for the two groups are

- -3 2
Au=[22 _13].An=[3 _4}

3 5] = [3 4]

respectively. Thus, aggregate models obtained from Eq. (48) for
both groups are

. -24 14 ;|24 14
Ar = [ 24 -34 ] Az = [ 24 -34 ]

The example considers two cases: (i) p = 0.01, ¢ = 0.001, (ii)
4 = 0.01, € = 0.0001. Given the initial conditions 2,(0) = [2.0,3.0]T
and {to, T;] = [0, 0.3], the trajectories of z,(t) and Z;(¢), z(t) and
%(t) within the group §;, i = 1,2, are shown in Fig. 2 to Fig. 5 for
the two cases. The simulation results illustrate that the approximate
models are valid when 0 < e € p < 1.

1]

An

VII. CONCLUSIONS

This paper considered the asymptotic trajectory of a singularly
perturbed hybrid system whose state equations depend on a near-
decomposable finite state Markov chain. The limiting behavior of the
decoupled slow mode subsystem over the interval of fast transitions
within a group can be approximated by an averaged value of the
system matrix over all their values depending on the fast states of
the group. The mean-squared error between the approximate model
and the original one tends to zero when ¢ tends to zero. The stability
of the decoupled slow mode subsystem is discussed and two criteria
are introduced. The limiting behavior of the fast mode subsystem
over the interval of fast transitions within each group depends on
the relative size of 4 and ¢ when both ¢ and ¢ tend to zero. The
subsystem can be approximated as a time invariant system with the
constant system matrix held to the value at the initial transition
when s = o(¢). The subsystem can be modeled as a hybrid system
depending only on the fast states of each group when st = O(¢). The
subsystem can be approximated as an averaged value of the system
matrix over all their values depending on the fast states of each group
when ¢ = ofy1). In the conpled case approximate models for reduced
order systems are investigated according to the relative size of the
two perturbation parameters. The results are shown to hold when
the switching process is stationary and irreducible, each group of
strongly interacting states is irreducible and time reversible.

Additional work remains to be done in the analysis of the lim-
iting hehaviar of singularly perturbed hybrid systems with control,
or with noise, or hoth by using the preceding methodology. This
approach permits A nnified treatment of approximate models. The

resuits presented in this paper provide an initial step in facilitating
the analysis of the behavior of singularly perturbed hybrid systems
with control or noise.
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ABSTRACT

This paper studies the stabilization of a stochastic hybrid system whose state
equations are governed by a stochastic switching process, which is modeled as a con-
tinuous time finite state Markov chain (FSMC). First, Linear feedback laws with
non-switching gains are proposed. The non-switching gains are computed based on
the sufficient conditions derived for the definition of non-switching stochastic stabi-
lizability. Secondly, Linear feedback laws with imperfect detectors are studied. The
range of the detection probability for the detectors are computed. The results are
shown to hold when the Markov chain is irreducible and the system states are per-

fectly observed.

I. INTRODUCTION AND PROBLEM FORMULATION

1.1 Introduction

The present paper is concerned with the stabilization of a class of stochastic hy-
brid systems . The state space of a stochastic hybrid system is a cross product of
an Euclidean space and a finite discrete space. Basically, stochastic hybrid systems
are a special type of linear, piecewise constant, time varying systems which switch
randomly among a finite number of linear time invariant models. The switching be-
haves like a continuous time finite state Markov chain (FSMC). Such systems have

been successfully used to model pilot commands in target tracking, isolation levels of

1This research was supported by the U. S. Air Force under grant AFOSR-89-0241
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solar recetvers, abrupt variation in the parameters of economic systems, and systems
subject to sudden component/sensor failures or repairs, abrupt environmental distur-
bances and changing subsystem interconnections [1]. Preliminary work established
the optimal control solutions for stochastic hybrid systems [2-7]. For a quadratic per-
formance, the optimal linear feedback control law with switching gains has already
been proposed. On the other hand, several schemes to stabilize stochastic hybrid
systems are investigated in [1]. Another study [7] developed the new definition of
stochastic stabilizability, and then established sufficient and necessary conditions for
this definition. Indeed, most of previous techniques require both the continuous states
and the value of the Markov chain to be measured, in order to implement on-line
the feedback laws with switching gains. In practice some information, such as the
complete knowledge about the Markov chain, is often difficult, if not impossible, to
obtain. Some control strategies with less knowledge of the Markov chain would be
more realistic [1,8].

Our aims here are to develop new stabilization schemes for a class of stochastic
hybrid systems. The schemes require less knowledge of the Markov chain. These

techniques are expected to aid in the design of controllers.

1.2 Problem Formulation
The system models under consideration are assumed to have the following state

equations:
#(t) = Alr(t)]z(t) + Blr(t)lu(t), (1)

where t € [to, T}, T may be finite or infinite, z(t) € R™ represents the system states
and u(t) € R™ the control. All matrices are of proper dimensions and are random
through their dependence on the values of the random process r(t), called “form
index”. The form index r(t) is governed by a continuous-time FSMC taking values
in a finite set S = {1,2,...., N}. The evolution of the form index r(t) with time is
described by the state transition probabilities of associated FSMC on S

2



MiA+o(A)  ifi#j

Prob.{r(t + A) = j|r(t) = i} ={ 1-MA+0(A) ifi=j

A= 3N (2)

where A > 0, and all values of A’s are finite. Let A be the generator of the r(t) process.
Assume that the initial values z, z and ry are independent random variables; z5 and
29 are also independent of the o-algebra generated by {r(t),t € (to,T]}. The current
value of the system model is denoted by an index, for example, A; and B; will denote
A[r(t)] and B[r(t)] when r(t) = i. The paper assumes that the z(t) is perfectly
observed and the r(t) process is irreducible. The ergodic distribution of the r(t)

process is given by
tl_x_’rglo Prob.{r(t) = j|r(0) =t} =ej, i, jE€S

The paper is organized as follows. Section II develops linear feedback laws with
non-switching gains when the controllers are allowed to feedback only the continuous
states. Linear feedback laws with switching gains are considered in Section III when
practical detectors are used tc observe the value of the Markov chain. Three illustrate

examples are given in Section VI. Section V concludes the paper.
I1. Stabilization Via Non-switching Gains

This section considers the scheme to stabilize the system given by Eq. (1()-(2)
without any knowledge about the r(t) process. In [8] the author has showed that non-
switching control gains for a class of stochastic hybrid systems may be preferable, in
addition to the fact that they are much easier to implement. In what follow some
notations and the definition of non-switching stochastic stabilizability are introduced.
Sufficient conditions for the new definition are derived. The non-switching gains are
computed based on the sufficient conditions.

Let z(t, xo, u) denote the trajectories of the random processes z(t) from the initial

states z(0) = zg, under the action of the admissible control u(t) and every sample
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path of r(t). A new definition of non-switching stochastic stabilizability , modified
from the definition in [7], is described below.

Definition 1-System (1)-(2) is said to be non-switching stochastically stabilizable
if, for any finite zo € R™, there ezists a linear feedback control law L that is constant

for all values of r(t) € S:
u(t) = —Lz(t)
such that there ezits a symmetric positive definite matriz M satisfying

711_:;10 E{/OT z'(t, To, u)z(t, To, u)dt| 2o} < TZMzo
where ||L|| < co, and z'(M') denotes the the transpose of the vector z(t)( the matriz
M).

From the above definition, non-switching stochastic stabilizability of a system
means that there exists a linear feedback law which drives the x states from any finite

initial states zo asymptotically to the origin in the mean square sense. Sufficient

conditions for non-switching stochastic stabilizability are derived as follows:

Theorem 1 System (1)-(2) is non-switching stochastically stabilizable if , for, for
each form i € S, there ezist a control law u(t) = —Lz(t) such that for any given
positive definite symmetric matriz N;, the (unique) set of symmetric solutions, M;,

of the N coupled matriz equations

1

M)+ i AijM; = —N; (3)

i=lg#

(Ai — B;L - %A,-)'M.- + M;(A; - B.L -
are positive definite for eacht € S.

Note that Theorem 1 does not require the assumption of the irreducibility of
the r(t) process. The proof of the theorem is similar to the proof in [6] except the
unobserved value of the r(t) process. In applying Theorem 1, we choose the control
law L, let N; be identical or simple diagonal matrices, and then solve for Eq. (3) to

obtain the symmetrical and positive definite matrices {M; : ¢ € S}.
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The sufficient conditions in Theorem 1 are difficult to check. There exits a simple
necessary condition for non-switching stochastic stabilizability of system (1)-(2). If
system (1)-(2) is non-switching stochastically stabilizable, then in each form i, L can
be chosen such that all the closed-loop system matrices (4; — B;L — -.:;A,-) are stable.

The non-switching gains can be computed based on the following procedure. First,
let the control law L be chosen such that all the matrices {A; — BiL — A : i € 5}
are stable. Secondly, let {N;: 1 € S} be identical or simple diagonal matrices, and
then solve for Eq. (3) to obtain a set of symmetrical matrices {M; : i € S}. Finally,
stop the procedure if all the matrices M; are positive definite. If not, go to the first
step and repeat the procedure again. An example (Example 1) to illustrate such

procedure is shown in Section IV.

II1. STABILIZATION VIA SWITCHING GAINS WITH IMPERFECT
DETECTORS

In the previous section, stabilization of stochastic hybrid systems by a nonswitch-
ing linear constant feedback law was introduced. The main advantage of this stabi-
lization scheme is lack of the need for detection and estimation of the r(t) process.
However, despite the simplicity of this scheme it does not permit a large class of such
systems. To alleviate the shortcoming, switching gain stabilization is considered in
this section. The scheme requires a form index detector to detect the current value

of the r(t) process. The detector is with the following characteristics:
o All jump times of the r(t) process can be detected.

o Let r*(t) denote the output of the detector. The value of the r*(t) over the
interval [tx, tk+1], where t; and ti4, are two successive jump times of the r(t)
process, remains constant. The relationship between r(¢) and r*(t) at the jump
time t; is given by

. . _a_Jp ifi=j
Prob.{r"(ts) = jlr(te) =1, } = { g ifi#]

)




where p is the detection probability of the detector for each form and ¢ = 2.
In the scheme the linear feedback control law depends on the system states and

the value of the detector, i.e.,

u(t) = —L[r"()]z(t),

. where ||L;]| < co. Thus, the closed-loop system becomes
z(t) = Alr(t), r*(8)]x(t) (4)

where A[r(t),r*(t)] = A[r(¢t)] — B[r(¢)]L[r*(2)).

In what follows the stability of the system given by Eq. (4)-(2) is studied and
two stability criteria are introduced. To have the stability criteria, a brief review
to the notation of logarithmic norm is given. The logarithmic norm (also called the
measure of matrix) was investigated in 1958 separately by Dahlquist {9] and Lozinskij
[10] . The properties of the norm have been well documented in [11]. The norm has
been applied extensively to study the growth of the solution of linear, time varying
systems. Below is the definition of the logarithmic norm.

Definition 2: The logarithmic norm associated with the induced matriz norm || - ||
is defined by

i A) = g 2021
With the norm g and the irreducibility of the r(t) process, we derive the following
important lemma in that we use it to find the conditions for the stability criteria of

the system given by Eq. (4)-(2).

Lemma 1 Let the r(t) process be irreducible. Then

N
Th_{glof/ (Alr(t),r()])dt = 3~ e{pp(Ai) + ¢ Z# i)} wpl

i=1 J=1,75%1

where A;; denote the current value of A[r(t),r*(t)] when r(t) =i, r*(t) = j.

Proof: Let T; denote the total sojourn time over the interval [0, T] for each form ¢ of

the form index r(t). Since r(t) is an irreducible FSMC, it is well known [12] that
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li 3—e~w 1
fim, 7 = e wP

Further, T;; is defined as the total time when r(t) = ¢ and r*(t) = j over interval

[0,T]. It is easy to show that

lim #(Ai)T; _ [ pein(Ai) ifi=j, wp.l
T— T qe;u(Ai;)  ifi#j, wpl

This completes the proof.

Theorem 2 The null solution of the system given by Eq. (4)-(2) is almost sure
exponentially stable if it is sufficient to have

N _ N _

Yoedpp(Ai)+q Y (A} <0

i=1 J=lii
and necessary to have

N B N _

Yoepp(—Aa)+q Y wu(-A;)}>0

=1 J=1,3#1

Proof: From the theorem in [11, pp. 89] it follows that

T (= A[r(t),r* T o u( A[r(i).r*
zofle=do TEEHPFEE < 2(T)|| < flofjedo TEAFTEE

As T tends to infinity, Lemma 1 yields the results.
If p=1, i.e., the detector is perfect, the results are shown in [1]. In other words, if
the system states and the value of the r(t) process are perfectly observed, and if the

linear feedback law with switching gains satisfies
N -
Z 6,';4(14.',') <0 (5)
=1

then the null solution of the closed-loop system is almost sure exponentially stable.
There arises a interesting problem: if the control law with switching gains is designed
to satisfy the condition given by Eq. (5), what is the the range of p such that the
closed system is almost sure exponentially stable when the imperfect detector is used?

The following corollaries answers the problem.
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Corollary 1 if YN e;u(Ay) < 0 and TN, e.-{Zf’:L#‘- p(Ai;)} <0,and 0 < p <1,
then the system given by Eq. (4)-(2) is almost sure ezponentially stable.
Corollary 2 if YN e;u(Ai) <0 and TN, e Zf’:,'#,- 1(4;;) > 0, and

T, e,-,u(_fi,-;) i (6)
Y TN, e Z;v:x,j;e.‘ n(Ai;) — TN, eip(Ay)

then the system given by Eq. (4)-(2) is almost sure ezponentially stable.

p>1+

IV. EXAMPLES

In this section three examples are provided to illustrate the methods derived in
Section II and III. The first example demonstrates that a system given by Eq. (1)-
(2) can be stabilized by using only a linear feedback law with nonswitching gains,
i.e., any control law with switching gains does not satisfy the sufficient condition (or
the necessary condition) given by Eq. (5). The second example examines a system
which can be stabilized via both two methods discussed before. The range of the
detection probability for the detector is computed. Finally a system which can not
be stabilized by the method in Section II but can be stabilized by the method of
Section III is considered.

Fzample 1: Consider a system with the form index r(t) taking values in a finite

set S = {1,2} with the generator

a=[3 4]

The system and input matrices are given by

o1} , [1
A=l2 35=]0

o]

This example chooses the linear feedback laws L and {N; : i € S} as follows:

A2=

[0
4

8




1 2
L=[5, 17],Nl=[0 ?},N2=[g 2]

Solving for Eq. (3) yields

0.7634 1.2792] [2.2798 0.2418]
aM2 =

M, = [ 1.2792 7.9064 0.2418 0.4156

Since the solutions M; and M, are symmetric and positive definite, the system is
non-switching stochastically stabilizable. However, this system can not be stabilized
by the method in Section III. Given the logarithmic norm associated with the induced
matrix norm || - ||y {or || - ||z or || - || ), for any set of designed switching gains L, and

L,, it is shown that
elp(Al — BlLl) + ez,u(Ag et B2L2) >0
eipp(Ay — BiLy + eap(Az — B2Ly) > 0

The sufficient condition given in Theorem 2 does not hold.

Fzrample 2: Consider a system with
-2 2
-3 5]

SIS HESHHESH

The stationary distribution vector of the r(t) process is given by

3 2
[617 62] - [31 '5'
Given the logarithmic norm associated with the induced matrix norm || - ||; and

Ly = {2, 4], L2 = [2, 5], we have
elp(Al - BlLl) + eg;l(Ag - Bng) =—-04>0

elp(Al - B L, + eg,u(Ag —_ Bng) =12>0
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Thus, from Corollary 2 it follows that p > 0.75. In other words, the detector must
the detect probability p where p > 0.75.

On the other hand, this system can be storhastically stabilized by using a non-
switching feedback controller. Let L = [2, 3]. Solving for Eq. (3) yields two symmet-

rical and positive definite matrices M; and M; where

1 _4 1oz
M1=[ ‘4 2_359]’”’2=[ 7 l_ﬁs]
144

19 144 38

Ezample 3: Consider the two-form system with

1 4
= — =1 = - —
Al 3, Bl , A2 3, Bz 1

and the generator of the r(t) process

-2 2
4|7 3]

Obviously, this system is not nonswitching stochastically stabilizable. We design
Ly =2, L, = —3 such that the sufficient condition

3 2 ]
g#(Al - B]L]) + B[J(A.z - Bng) = —§ <0

is satisfied. Then we compute

3 2 10
g/l(Al - B[Lz) + 5/1(/12 - Ble) = -é— >0

From Corollary 2 it follows that p > 2. Thus, to stabilize the system, the detector
must have the detect probability p where p > %

V. CONCLUSIONS

This paper considered the stabilization of stochastic hybrid systems whose state
equations depend on continuous time finite state Markov chains. Non-switching feed-
back laws have already been studied when the controllers are allowed to feedback only
the system states. The non-switching gains are calculated based on the sufficient con-

dition for non-switching stochastic stabilizability. Furthermore, linear feedback laws

10




with the practical detectors are proposed. The range of the detection probability of
the detector is computed according to the sufficient conditions for the almost sure
exponential stability of the closed-loop systems.

Additional work remains to be done in stabilizing singularly perturbed stochastic
hybrid systems which have been studied in [13,14]. The results presented in the paper
provide a initial step in facilitating the work.

Finally these results may be extended to the optimal control problems for singu-

larly perturbed stochastic hybrid systems.
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ABSTRACT

Canonical forms for discrete linear N-periodically time-varying
(LP) completely reachable systems z(k) = A,z(k} + Byu(k)
and y(k) = Ciz(k) + D,u(k) are presented, which generalize
the linear time-invariant (LTI) case. The derivation is first
accomplished through an equivalent LTI-quadruple to 4 N-tuple
((As, BiyCuy Di))a=oa,...n-1. This LTI system is revealed to
be a subcomponent in a decomposition of a given discrete LP
system represented by the 4N-tuple. Finally, an application
of the obtained canonical forms is demonstrated in a control
problem: eigenvalue assignment of the monodromy matrix.

I. INTRODUCTION

Linear periodically time-varing (LP) systems have been
studied by many researchers [6, and references therein]. LP
systems are suitable models for some periodic behaviors such as
seasonal phenomena and rhythmic biological movement. It has
also been noted that LP controllers give linear time-invaraint
(LTI) plants more robust control in the maximum attainable
gain margin sense [1]3].

Motivated by the above, we have investigated more pre-
cise mathematical descriptions of LP systems {7]{8]. In this
work, we primarily show a state-space canonical form for dis-
crete LP systems z(k+1) = A,z(k)+ Biu(k), y(k) = Ciz(k) +
D,u(k) where the quadruple is N-periodic (A, B:,Ci, Ds) =
(Aean+Bren, Coeny Dian). As for LTI systems, we believe that
the canonical forms for the discrete LP systems play the same
role in such probiems as realization, control and identification.

In section II, a reachable canonical form is derived us-
ing an equivalent quadruple to a 4/N-tuple ((Ao,Bo,Co, Do),
(Ah Bh Cl? Dl)v- . 's(AN—lv BN-17 cN-lvDN-l))' In section m1
a system decomposition S°L.S is derived for a given discrete
LP system, and the equivalent quadruple is revealed as the re-
alization matrices for the LTI svstem L.. In section IV, a typ-
ical application is demonstrated using the reachable canonical
form along with the stability analysis and feedback connection
rule developed in section III: eigenvalue assignment of the mon-
odromy matrix for a compietely reachable discrete MIMO LP
s .
Throughout this work, LP systems are assumed to be of
dimension n with m inputs, p outputs and period N such
that (A, By, Ce, D) € R™™"™ x R™™ x RP*" x R**™ for
k € {0,1,...,N — 1}. Bold face characters are reserved for
mazsrices and vectors of ’big’dimension {a multipie of N) such
as (A.,B., C,.D,) € RNnxNn o RN'I!NHI X RprNn X RN,xh'u
and P{k) € RM'. The superscript '’ is used to indicate a set
such as {0,1,2,... , N ~1;, = N".

II. STATE-SPACE CANONICAL FORMS

Before deriving the canonical forms, let us recall the sig-
nificance in general setting. Let an 'objective’ function F on

! This 1s supported by the U.S. Air Force under grant AFOSR-85-0241
and Northwestern.

CH2642-7/89/0000- 122051.00€ 1989 IEE= 1220

a parameter set X be given. In many situations, the function
F is many-to-one so that we can find an invariant partitioning
{Xi € X : Ues Xi =X for some index set I, X,NX; = ¢ for
1# 7}
F(z)=F(y) = z,yeX,
The parameter set X is then too 'redundant’ with respect to the
function F. Therefore, it is natural to select a representative
or a canonical element z; € X, for the subset X,. This selecting
process would be understood as a map A from X into X. Such
map A is called a canonical form for the parameter set X under
the partitioning {X; : 1+ € I} with respect to the objective
function F. The function F on X is 'simplified’ by restricting its
domain to the subset {z, : § € I} without missing the original
objective
F =Fizp A

If suck parti.ioning is induced by an equivalence relation R,

the objective function F and a canonical form A are

F(z)=F(y) <« =zRy (1)
A=)=Al) < =Ry @)
A(z) Rz (3)

More specifically, consider a2 parameter space {((As, Bs, Cs,
Di)ien- ¢ ((Ar.Bi))een- is completely reachable }, an equiv-
alence relation Rp and an objective function H where
(i) H is the vector valued puise response or its one- sided 2-
transformation of a discrete linear periodically time- varying
(LP) system LP((A;,B., C;,Dg)).en-

H(z,8) = [Cilhicy -+ AoAN-1 -+ Aigz™ V1 +
CictAicz -+ AvAnoy -+ Az PP =2 €27l
(N1 = i hodnoy o AT BT

Dz~ forie N* (4)

LP((AsBiyCe, Di))aen- : u(k) = y(k)
z(k + 1) = Auz(k) + Byu(k), ylk) = Ciz(k) + Dru(k)
{Aiy Be-Ca. Di) = (Auans Bawn,Cosn, Diun) forall b (3)

(ii) {{(Ax+Bi))ren-is calied completely reachable iff each reach-
ability matrix R;((Ai,B:))ren- for s € N® is full rank
R{(Ax,Bi))sen+ = |Bi AiBiey AiA-1Bic: ---] (6)
This matrix reiaies the siaie z{i~1) to past inputs u(k), k<.
(iii) ((Ak. Bg, C.,Dk))‘ey- RP ((AQ'B;,C",D")).EN‘ iE there
exist nonsinguiar matrices (T;)en- such that
ATvr = T.A',, B, = TkB;' CeTomy = C‘.. D, = D'h (7)

Note that H is invariant under Rp as in (1). Now, we
intend to derive canonical forms {A} as in (2) and (3) for
{((Ats By Ces Di))aen- : ((As)Bi)laen- is completely reach-
able } in (6) under Rp in (7) with respect to H in (4). Since
a system (5) is involved, such A is simply called a reachability
canonical form for discrete LP systems.

In our derivation, it will be very convernient to con-
sider an equivalent quadruple (A,,B,,C,.D,) to0 a 4N-tuple
{(As, Bs, Cuy Di))aen- inducec by a map E

E ((AhBhCthk))hEn' - (Aancth) (8)




r By
B,

An-l By

Co ] [ Do
D,

Cun-y Dv_,

The map E, which is called hereafter the extended form, pre-
serves the compilete reachability of ({A,, B:))sen in (6) and
the equivalence relation Rp in {7} in the following sense.
LEMMA 1: ((As.B:))sen-is completely reachable iff
(A¢.B.,)is reachable.
PROOF: Observe the reachability matrix

R(A.B,) = [BJAB,--|A]"'B, ()

After each submatrix A'B, for ! € (Vn)® is block-diagonaiized
by a column change operation, the whole matrix can be block-
diagonalized by another column change operation

R(A,,B,)T. = diag([Bo AoBn-1 AoAn-1Bw-z -+,
(Bi A1Bs AjAoBnoy +-7], -+,
[BN—l AN—IBN-X AN-IAN-ZBN-; ..D (IO)

where T. denotes those column change operations. Since
each diagonal component in (10) is the reachability matrix
R.((A«, Bi))zen- defined in (6), we proved the lemma.
LEMMA 2: Let Re be an equivalence relation defined by:
(A..B..C.,D.) Re (A},B,,C,,D) iff there exists a diagonal
nonsingular matrix TD = diag (T.-).ve)v- such that
A.Tp=TpAl, B.=TpB,, C.Tp=C,, D,=D, (11)
Then,
((A&'Bhv Ch,Dk))bE‘V‘ RP ((AlkPB'k’ C;'DL))EEN'
{A.,B,.,C.,D.) Re{A,,B,,C,, D) (12)
PROOF: By direct calculation of (11), we obtain (7). /////
For showing our main result, let (A,,B,,C,,D,.), and
%A.,Bg,C;,D.; < denote (A,,B,, C.,D,) and
Ay, By, Ci, Di) Jaen- of which (A,,B,) and ((As, Bi))sen- are
respectively reachabie and completely reachable.
THEOREM 1: If a map I[', is a canonmical form for
{(A. B,,C..D,).} under Re, then a composite map E~'T E
is also a canonical form for {((A.,B..C..D.))"} under Rp.
PROOF: (i) The map E~'T,E should satisfy (2).

((As, Ba, Cu. De))er Rp (A4, B Chy D)) er

< (by LEMMA 2)

E((AhBh Ci’D.))" Re E((A B'kn C;, D'l))

<> (since both sides of the above are reachable by
LEMMA 1, and T, is a canonical form as in (2} )

L.E((As BaCaoy Di))er = T.E((4}, B, Cu Dy))e

&
E'TLE((As, Be, Coy Di))er =
(ii) The map E~!'T,E should satisfy (3).

E-'TE((A,,B.,C., Di))er

(since T, is a canonical form as in (3) )

r.(A.'B.' C"Dl)' R‘ (A"Bl| Cllnl)'

= (by the definition of £ in (8) and LEMMA 1)}
rcE((Ah- B, Cth))« Re E((Ah By, C, Dk))n

= (by LEMMA 2)

= E-IF,E((A..B.,C.,DQ))" RP ((AlvthkyDi))a

We proved the theorem. /////

Although it is relatively easy to find a canonical form T
of E({Ay, By Cs, Di))sen- such as the 'reachability’ canonical
form with the Scheme II [2] (since the notions of reachability
and controllability are different for discrete time systems), we
need to find a canonical form I, which is of the extended form
as in (8). This is because we can apply the inverse map E~! to
obtain a canonical 4/N-tuple according to THEOREM 1. Let
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us introduce such extended canonical form I;,,. and hence a

reachability canonical form E~'Ty, . E:
((A . BuyCuy D) )aen ™ ((Arco.ns Bieoxs Carcoks Drcox))ren-(13)

which is called hereafter the Kronecker canonical form.
ALGORITHM for the KRONECKER CANONICAL
FORM:
(i) Construct (A,,B,) by E for a given ((Ass Bi))aen- that
is completely reachable, and search independent columas in
R(A,,B,): Recall that each column of R(A,,B,) corresponds
to each cell of the following Crate Diagram, e.g., for the
case n=5, m=2 and N=3. Observe that all columns of
R.((A.,B.)),e;v- (with the proper zero-augmentation) are cor-
responding to i-numbered celis. See {6) and (10).

Bﬂ 0 g

ol 5] la
I jojol1]1]z2]z2
A, [1]1]2]2]0jo0
Al [®2]@]0 Ol
Al o@D 213
A f1l1]2]2]0]o0

-—-

I (2izioio[1i1j

A
(14)
More specifically, the m cells of A¥™~*[0---0 BF 0---0|T are
equal to (A, cer ApAn-y "'Anl)'Al <+ AgAN-1-t 'Ai'lel~ with

the proper zero augmentation forallr € n*, s € N*ands € m".
The search procedure is principally the same as for the usual
Scheme II, from left to right until all Nn independent cells are
founded, except that the dependency test for an i-numbered cell
only needs to be done regarding to all previous independent -
numbered cells. Once a cell turns out to be dependent, set up
the dependency equation, which will be utilized in step (iii).
The positions of dependent cells would be marked by big O as
in (14). The positions are actually specified by the reachability
index (k;, ks,...,knm), for an instance, (2,3,2,3,2,3).
(ii) The ordermg of independent cells is now chosen differently
from the Scheme II, so that the resulting matrix is diagonalized.
The procedure is as follows: Order all i-numbered independent
cells to form a matrix such as for i =0
To = [{Boj1 Ao{Bwn-1h -+ |[Bojs Ao|Bn-i]z -]
where the subscript 1 or 2 of |Bo|, for instance, stands for the
first or second column. Form a transformation Tp
Tp = diag (Ti)ien- (15)

(iti) Find an extended canonical quadruple I';., .

r:..a : (Aan CnDt) land (Ako.nBu..u cin.nDSu.l) (16)

A.TD = TDAhn.c B, = TDB‘“.C CUTD = C?u.a D- = Dko.:
For obtaining Aj.,., utilize the dependency equations found in
step (i).
iv) Applying E~!, we finally obtain the Kronecker canonical
{Ateer + Bicos Carcon s Dicas))ren--

REMARK 1: In step (i), we should always find n indepen-
dent cells in all i-numbered cells for each s € N*. To show this,
rewrite the corresponding reachability matrix R,((Aa, Bs))sen-
in (6)

Rt((AhBt))heN‘ = [W. ¢.—W,— Q?W'. . ]

W, =B | AB.-y| | A+ AoAn-1++- AesBis]

& = AiAin, - AoAN-y A (17)




By assumption of the complete reachability, R(W,,®,) is full
rank for each s, and the number of independent columns is
now the dimension n of the monodromy matrix &,. In step
(ii), we might order independent cells according to the order-
ing procedure of the usual Scheme [. The resulting transfor-
mation would yield the reachability canonical form with the
Scheme I1 (Ao, Bios Cicor Dieo), Which is similar to the canon-
ical quadruple (A, +Biw.e s Cicoe » Dicoe) in (16) by column
and row permutation.

EXAMPLE 1: ((CerDi))sen- is arbitrary, and
((Ass Bi))aen- is given as
48 192 —4 —42 30] [ -1 -1117)
3 12 0 -1 4 0 0
(Ao Bo)=1{-16 -63 0 6 -16|,] 0 1
-22 -88 1 15§ -19 0 4 J
10 40 0 -—4 12 0 -1 J
0 -3 -4 -1 -8] ( 0 17 \
0 20 -2 -4 -19 0 0
(Ath) = 1 36 -13 -8 -56 ’ 2 o]
c 21 9 -1 S -1 -2
0 -38 7 9 45/ | 0 -1 J
-124 -155 10 <21 =78y O 07 W
23 28 =2 4 14 0 0
(Az, B;) = 327 467 -22 44 239 |,| -1 4
-85 -126 5 =10 -65 0 -1
7 13 0 o 1)1 o o] J

(i) Searching dependent columns:

Ro((As, Bi))res- = [Bo | AoB; | AcA31 B, | AoA2 4By | )
-1 -11 4 26 48 0 | . -106 .
0 0 0 1 30 -5 - -
=l 0o 1{0 -6|-161 24 (18)
0 4 -1 ~11 [=-22 O 46 |- -
0 -1 0 4 10 0 -18 {- -

Ry((AsyBi))ses = [Br | A1Bo | A14oB: | A1AoAs B, | 1]

0o 1 0 © 1 0 -4
0 O 0 1 4 04 2. -
=!1=-2 0|-1 0412 4{. <13 ). - {19)
-1 -2 , 6 O 1 -2 - 9 |- .
0 -1 0 -2 -9 1 7 1. -
R3((As, Bi))ses- = [Bz | AsBy | A2A1Bo | A2A140B; | -]
0 01]1--4)]-10 1 4
0 0;0 1 2 0. -2
=|-1 4]0 o 22 -1{. e (20)
0 -1]0 O -5 4 | . =25
0 0|0 0O 0 -1 7

The reachability index turns out to be (2,3,2,3,2, 3) Setting
up the dependency equation:

AoAs[Biy
AoAzA;[Bols

Ay Ag[ B,
A1 Ag Az By,

Az 41[Bo)y
A3 Ay Ao|Bs)z

= -4[30]1
= 2{30]1 -~
~4A0A3( B )2

5Aq|B:)z

—3A0lB;); + 2{Boj2 + 3&‘31}:(21)
Aq[Bs)y ~ 2|Bojz ~

(22)

= ’3[31]1 - GAIIBOII -+ [Bx]z +4A; [Eo]: (23)

= {B1j1 + TAi[Boh ~ 4[By)2
— A1 Ao[Bs)s
= -2(By);

= 2{Ba}; + 34;|B)]; - 3|By)2 -

—~TA1A,[Bols

(ii) Ordering independent colurmns for each &:
To = [[Bo]y Ac|Bsli|[Bojs Ao|Bsjs AoAs|[By)s]

Tl = [ lBlll
Ty =B

A1 [Boj1 | |By]2
Az |Bi}y | |Bsj:

- 2A1[Bo};

243(By):

Ay [Bo)s AjAo|By)s |
A3 [By]s A4 |Bo); |

(24)

- 2A1[Bd; -+ 5[3;]1 - 243[3;]3(25)

(26)

(27)
(28)
(29)

(iii) Form Tp in (15) with (27) to (29). Applying (16} and uti-
lizing (21) w0 (26}, we obtain (there is no need for numerically
calculated Tp yet)

Au,_,:
0 -4 00 2]
1 =300 1
G 200 -2
0 310 -5
0 001 -4
0 -300 1
1 -6 00 7
0 100 -4
0 410 -2
0 001 -1
0 ~-200 2
1 -200 3
0 500 -3
0 210 -2
0 001 -7 ]
10 10 10
00 00 00
Bo..=diag{ |0 1{,}0 1/[,]0 1 (30)
00 00 00
00 00 00

Calculate Tp in (15) with (27) 1o (29) and (18) to {20). Ap-
plying (16), we obtain C,,,, and D;,,,-
{iv) Read out nonzero block in (Azee +Baas +Creoe 1 Dicore)
according to E~!, and we finally obtain ({As.4 » Bacos s Cacok »
Dacos)laen:-

fact, each value of a canonical form is completely
specified by two things, a structural index x« and a para-
metric quantity 8: & tells which positions of all matrices

E™'T200.E((Ais Bas Cus Da))sen- ave fixed to Oor 1, and § gives
real values for the nonfixed positions. In the canomca.l quadru-
pie {Ascee v Biene 1 Caeos s D2see) of EXAMPLE 1, all entries
of (Cieoe s D3coe) are arbitrarily determined, and the invariants
are only found in (Ajee. »Bie,) in (30). The ordered set of real
numbers on the nonfixed positions in (Aze. Bie,) in (30) and
the set of indices indicating the fixed 0 and 1 entry positions are
respecively values of the parametric complete invariant # and
structural invariant . Specifically, since the reachability index
(2,3,2,3,2,3) determines the fixed 0 and 1 entry positions, we
can write

fl2coe(AeB,) = (2,3,2,3.2,3)

The range space of " however, is a proper subset

‘rluc{(Ac Bt)} C {(klvkh -"kﬂﬂ . z: k = hn}

=1

An index (2,3,2,3,1,4), for instance, does not correspond to
x for reachable {(A,,B,)} in the case n = §, m = 2 and
N =3, since there are respectively 4.5 and 6 independent ceiis
(columns) in groups of 0, 1 and 2 numbered cells (in matrices
of Ro((As, Bi))sen=y Ra((As, Bi))aen and Ry((As, Bu))sen-),
which violates the assumption of the complete ility as
mentioned in REMARK 1. The parametric complete invariant
9 is indeed the 'simplified’ parameter. All quadrupies
{(A"B"C“D.)y} (‘nd hmce {((Ak’BhCinl))w}) are pa-
rameterized by x and 4.

Iii. A SYSTEM DECOMPOSITION

In the foregoing section, the extended form (A,,B,.C,,D,)
played a key role in the derivation of the canonical form for dis-
crete LP systems. Now, a question naturally arises what the
relationship is between the discrete LP system LP((Ax, B, Ca,
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D\))sen- and the LTI one L(A,,B,, C,,D,) for which the re-
alization matrices are of the corresponding extended form. We
investigate this through a system decomposition. Let M, £(k),
and Q(k) denote respectively a nonsingular Nj x Nj matrix,
a concatenated vector, and a diagonalized matrix

I;
I.
M,’ = ! .. (31)
I;

#(k) =T (k=N +1) -~ TT(k+1) rT(k)]T (32)

Q(k) = diag (Q(k - N = 1), ..., Q(k +1), Q(k)) (33)
Observe that M; is the generator of a cyclic group of order N.

THEOREM 2: A discrete LP system in (5) is decomposed
as

LP((A&. Bh, Cg, Dt))heﬂ' = S.L(A.,B" C"D¢)s (34)
where, using (31),

S :ulk) — v(k); v(k) = My (k) (35)

L(A..B.,.C.,D.}) : v(k) — wi(k)
z(k + 1) = Az(k) + B,v(k), w(k) = C.z(k) + D,v(k) (36)

S wik) — y(k); 9(k) = MY w(k) (37)

REMARK 2: Let L(A,,B.,C,,D,) be simplely L., and
called the extended invariant system of LP((As, By, Chs
D,})sens. The extended invariant system Z, is clearly different
from the other invariant models [3}[5], since its derivation does
not appeal to the, so called, lifting operator [3]. For a given
LP((A., By, Ca, D.))]eﬂﬁ' the composite system S°L.S indeed
gives its }/O-equivalent model at every instant of time, and still
L, pertains to the stability analysis and design as shown lzater.

PROOF: By stacking the equations in (5) for times (k —
N +1, ... ,k+1,k), we obtain another LP system

LP((AU’BM C.,Dh)) :ﬁ(k) and ?(k)

R(k + 1) = AR(k) + Byi(k), (k) = Cix(k) + D,a(k)
(As, By, €, Du) = (Auew . Buvw, Coen, Diaan) (38)

Consider the following transformati -
v(k) = Mia(k), (k) = MiR(k), w(k)=M,;*'9(k) (39)

By applying (39) to {38), we obtain a linear system with the
quadruple

(MR A, Mo BuMIY,
MA-IC,ME, MY D M) (40)

Observe the identities

M'AM, = Asny M:lBuM-. =Bin
M;thM« = Cnl M;lDiMn = Dn-n (‘“)

Applying (41) to (40), the quadruple in (40) becomes
(A.,B,,C,,D,) as in (8), and the transformed system is the
LTI system L(A,,B,,C,,D,} in (40). Moreover, the input and
output transformation in (39) yield S and S° in (35) and (37),
respectively. /////

LEMMA 3: A discrete LP system LP{(Aq, By, Cu, Di))sen
in (5) is asymptotically stabie iff its extended invariant system
L(A,,B,,C,D,) in (36) is asymptotically stable.

PROOF: From (39], the state z(k) of LP is related to the
state z(k) of L,

g(k) =M izT(k =N +1),...,27lk = 1), 2T (&)IT
Due to the boundedness of M%, (| z(k) || — O as k — oo iff
I| z{k) || = O as k& — oo. Moreover, since S° has no internal

state, and all states of S go to zero for the zero input.
LEMMA 4: The following identity holds

Pe(2) = det(2] — A,)
=det(A] = Aicy -+ An-1do--- A) = p(A), for A = 2¥ (42)

PROOF: By direct calculation of det{zf — M~ A M.},

The subsystem of S°L,S have unique properties wiaica are
useful for the feedback connection.

LEMMA 5: The following identity hoids

55°L,S=L,S (43)

PROOF: Let u(k), y(k) and r(k) be the input and output
of S°L,S, and the output of $5°L,S, respectively. Then,

9(k) = M;*+VL,S u(k) by (37)
r(k) = Sy(k)
=M;*'9(k) by (35)

Therefore, r(k) = L,Su(k), which means the identity (43).

LEMMA 6: Assume the dimensions of all subsystems are
compatible. The parallel (addition) or serial (multiplication)
connection of the extended invariant systems as in (36} again
yields an extended invarint system.

PROOF: Let (A}, B}, C!,D}) and (A?,B?,C}, D?) denote
the relizations, and {v*(k), 2! (k}, w*(k)) and (v3(k},z°(k),
w?(k)) variable sets of the input, state, and cutput of the two
extended invariant systems L,; and L,;.

(i) Let v}{k) = v3{k) = v(k), wi{k) = w?(k) = w(k), and the
parallel connected system is

[::E::i”:[%l ‘22”::83 +[g§]v(lc)
vir= (e ct1[ 35 bt-mie

The quadruple of (44) is not of the extended form. But by
transformation Ty

I, 0 0 0 0 0 © 0

0 0 o 0 | I, 0 0 0

0 I, 0 0 0 0 O 0
Te=| 0 0 0 0 0 I, O 0 |(45)

o o 0o I, | 0 0o 0 - 0

0 0 0 --- 0 6 0 --- 0 I,

where n; and n; are dimensions of L., and L.z, the quadrupie
is

H(% 2] (8] 19 @1mea)),

(ii) Let v3(k) = wi(k), v}{k) = v(k), and w? = w(k), and the
serial connected system is

Mk +1 Al 0 W) ] [ B
[?fkix; } = [Bzc: Al ] [:’(k” ' [an.‘ }”""
w(k) = [ DIC! C!] [ :'E’;; ] -+ [DiD!] v(k) (46)
Again, by Tx in (45), the quadruple is

Al 0 B: it 2 551810
E(([BIC.‘ Al]' [B:D: . [ pict ¢}, piny; o




THEOREM 4: The following two feedback systems are the

same
rairsiraiErairm! -
Syl S S HLHS -
UL D R R W |
. — —
{8yl 57—
;—‘!

«3
et

PROOF: By using LEMMA § and 6.
IV. APPLICATION TO EIGENVALUE ASSIGNMENT

A typical control application of the canonical form derived
in section II is the eigenvalue assignment of the monodromy
matrix ®, as in (17) of a completely reachable discrete MIMO
LP system

z(k +1) = Auz(k) + Bau(k), y(k) = I.z(k) (47)

where I, is a n X n identity matrix. The eigenvalue assign-
ment problem is stated as: By what cyclo-static state feedback
u(k) = Lyy(k) is the monodromy matrix & of the plant (47)
controlled to .0 = (AN-I - BN-ILN-I) e (Al - B]Ll) (Ao -
ByLy) such that for a given desired polynomial p{})

det(Al - (An-y = By-1Ln-1) -+ (A1 = BiL;)(Ao — BoLo))

=p(}) (48)

Although the eigenvalué assignment problem has been
soived (4], our approach using the canonical form is simple and
generalizes the time-invariant case. The solution is eventually
obtained in terms of the cyclo-static state feedback (L,)ren-
and input transformation (Gi)sen-

u(k) = Gur(k)— L,y(k) (49)

However, the problem is first considered through the extended
invariant systems: The controlled system in (47) and (49) can
be understood as in THEOREM 4 where

LP = LP((Ag, B, I, 0))gen-, LP; = LP((O, 0,0, Lg))gen-,
and LPy = LP((0,0,0,G.))sen-. The overall extended invari-
ant system Ld(l -+ L.IL.z)-lLd is

Ld(l - LnlLd)-lLd = (Ac - B'GIG:ILIM'\VBtGUQ Mvn 0)

(50)

Let the characteristic polynomial of the controlied extended
invariant system matrix A, - B, L,M, be

det (2] - A, +B.LM,) =p'(z) (51)
then, by applying LEMMA 4 to (48) and (51),
p'(z) =p(A) for A =2" (52)

Therefore, the problem is solved by finding L, in (51) with
proper G, for ¢(z) given from p(A).

Without loss of generality, we show the procedure for finding
L, and G,, aod hence (L;)ren- and (Gi)ren- in (49) with an
example.

EXAMPLE 2: A completely reachable LP system
LP((A.,B.,I..,O)).GN' asin (47) ofn= 3, m=2and N=2is
given. Let the extended invariant sysiem be L(A,,B.,M,,0)
where M, is as in (31).

(i) Using the ALGORITHM in section II, find the extended
canonical quadruple Ty,,, of (A,,B,, M,,0). Let us assume its
structural invariance (reachability index) is x = (5,0,1,0)
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%) [3)
1{0|@l1|®
Ad1]1]@)| o

Allojo]1]a
Al1]1]o]o
Aljojo|1]1
A @D|1]0]0
The following Tp yields the extended canonical quadruple
(Azeorsr Breaen MaTp,0) of (A,,B,,M,,0)
Tp = diag (To.T1) (53)

,[IBolx AsA, [Bojs AsAjAsA(Bsly O 0 0
0 U] 0 |Ba}i Ay [Beli AirAsA, [Bo)

(Aau,nB)a.c)=
G690 0 0 1 boo
010 6 O
001 0 0
0 0 ao ' 1 by, (54)
10 a1 0 0
01 a3 0 0

(ii) The following T, or Q yields the usual reachabiiity canon-
ical form with the Scheme II (A;.,, B, MaTpQ,0) of
(A., B, M,,0)

Tieo = (85)
[[Bul: 0 AsA; [Boy 0 AgAjAeA; |Bely O ]
0 AilBax [} AlAsA; [Bo: 0 {81}
Ta.g=TDQ (56)
100000
001000
000010
Q=|000001 (57)
010000
000100
(AM'BM)=
0000 0 aoc 1 bo O O
1 000 a3 0 0 0O 0
0100 0 0 0 00 O (58)
0 010 ag, 0i{*j]0 00O 0
0001 0 0 0 00 0
0 0 0 0 ag 0 0 01 by,

(ii) By the algorithm (2, pp. 434437], we ob-
tain the transformation R and controlier canonical form
(A3, B3, M. TpQR,0) of (A,.B,. M,.0) (see the derivation
in the APPENDIX)

10 -0z, 0 hal 0
01 0 -a31 0 0
- 00 1 0 bt T B 0
R=1p0 0 1 o0 0 (59)
0 C 0 0 1 0
co o ©0 o0 1
(Aze,By) =
0 a3 0 a;;7 0 agp [1 boo 0 O'H
1 00 0 0 0 | 0 00 0
1] 10 0 o] 4] 0 00 0
o o1 o o of'lec oo © (60)
0 00 1 0 0 [0 00 0
0O 00 O0way ©0JLl0o 01 by




(iv) Assume that a desired characteristic polynomial is given
as p(A) = A% = p3a? — p12 = py. Then, by (52),

Pa) =2 -pz' —pz~po

(v) Using the coatroiler method {2, pp. 500-503

;, we now intend
to control the system L{A;,,B,,,.M.TpQR,0

to

L(A',‘,B',.,M.qun. 0) (A{hc ’u) =
0 pp 0O pr 0 po 1000
1 00 00 O 0000
0 10 00 O 0000 61
0 01 00 O|*'|]OOGCO ( )
0 00 10 O 0000
0 00 O1 O 0010

by the input transformation G, and state feedback
G 'LM.TpQR such that

B;c = thn A'u = Ale - B"G.G:lL,M.‘TDQM,:‘ (62)
(vi) From (60} to (62},

1 —bgo O 0
0 1 0 Q
Ge=lo 01 -, (63)
0 0 0 1
From (60) to (62},
0 ky 0 k& O Kk
- lo o0 0 0 o
GLMTIQR=19 00 0k O (64)
0o 00 0 0 0
where
ky=aoo—po, kr=a1—p1
ky=az1—p3, ki=ao)—1
From (53),(57),(59),(63) and (64),
ky ks asiky+ ks
) 0 ]n ° o
L= 00 kg (65)
0 [o 0 o] °

Observe that G, in (63) and L, in {65) are always block-
diagonal (hence the subscript ‘e’ is justified). This is clear from
as follows: (A,,,By,) in (60) is similar 10 (Azee.ey Baeo,) in (54)

Au.,. = QR_IA:«QR' B:«.- = QR-lBu (66)
Moreover, since (A}, B},) = {As,Bi.) except that ap; =1,

boo = 0, and by; = O, there exist (A}, ,, Bl,,,) which is similar
to (A}, .. B}, ), and is of the extended form. Specifically,

Abe.=QRT'ALQR, By, =QR™'B;, (67)
G, and L, are now diagonal respectively from (62),(66) and

67).

vii) Finally, the controlled extended invariant system is
obtained as L(A; — B; L.M.Tp,QR,B.G, M.TpQR,0),
which is similar to L{A, - B,L,M.,B.G,,M,,0). This is the
overall extended invariant system in (50) and THEOREM 4,
and hence the input transformation G, and the state feedback
L, is realized with the cyclo-static input transformation and
state feedback LPy = LP(0,0,0,G,) and LP; = {0,0,0,L,),
respectively.

V. CONCLUDING REMARKS

Another reachability canonical form can be obtained us-
ing the Scheme I instead of Scheme II in the ALGORITHM.
Observability canonical forms can aiso be found by using the
same steps in the ALGORITHM and the obvious duality. These
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canonical forms are useful mathematical tools, applicable to the
modeling, robust control and multi-rate systems.

APPENDIX

For simple notation, let A = A,,, ey = [Bj,); and €3
[Bml;. From (58),

Aleyy = 0y A% ~ 6y 146 + ag (68)
Aezy = agpenn (69)
Let
Aley —azA%ey —agen = e (70)
then, from (68) and (70),
Aeys = ugseas (71)
Let
Aeny — az dey = ¢y (72)
then, from (70) and (72},
Aty = Gy + e (73)
Let
A’eyy —ay en = e (74)
then, form (72) and (74),
Aejs = ep4 (7s)
Let
Atu = €12 (76)
then, from (74) and (76),
Aerz = ay e + €1y (77)

Form a transformation R = ey, ;2 ¢33 €14 €15 €31}, and we
obtain (59) and {60) by applying the formuia A, R = RA,,,
B;. = RB,, with (69),(71),(73),(75},(76) and (77).
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ON THE SENSITIVITY OF GENERALIZED STATE-SPACE SYSTEMS

W. Steven Gray

Department of Electrical and Computer Engineering

Drexel University
Philadelphia, Pennsylvania 19104

Abstract

The synthesis of minimum sensitivity state-space realizations
of linear time invariant systems is a well understood problem.
Such realizations have been linked to balanced realizations. In
this paper, the theory is extended to the synthesis of minimum
sensitivity genernlized state-space models for singular linear sys-
tems. A scalar sensitivity measure is first defined. Then the
minimization of the measure is consider over all admissible re-
alixations. Since minimal realizations are not required to be re-
lated by similarity transformation, the optimization problem is
more complex. A criterion is given for determining optimal sen-
sitivity structures. In the nonsinguiar case, the critenon reduces
to the familiar result. The simple example of the right-shift op-
erator is considered.

L Iptrodnction

The sensitivity of state-space realizations of linear time-
invariant systems has been 2 sabject of considerable interest
to researchers during the past five years (8,9,10,14,15,16,17,18].
Much of the motivation for this research has been the desire
to design digital filters and analog networks with minimam pa-
rameter sensitivity. At present, the semsitivity theory for this
class of systems is well established. The purpose of this paper
B to study the sensitivity of gemerslized state-space realizations
for singular linear systems. An example from this class is the
system described by the set of difference equations of the form

Ezies = Az +bm (1)
h = (2)

where £ is 3 singular nxn matrix such that the semi-state vector
2, € X* is defined implicitly. We restrict the discnssion here to
the discrete-time, single-variabie case for brevity, but mmch of
the following development can be extended to the continuons-
time and muitivariable cases.

In the souel linear system case, where E = [ it is well known
that staie-variable wodels are not unique. Any two minimal
state-space realizations of 2 given transfer function are related
by a similarity transformation, i.e., by a change in basis for the
state-space. In the singular case, however, minimal realisations
are pot necesmarily related by similarity. The set of adminsible
transformations is much larger. Thus, determming optimal sen-
sitivity realizations for the singular case is a nop-trivial extension
of existing theory for the usual linear case.

An outline of the paper is 28 follows. We begin by defining
senaitivity measures in 2 manner analogous to the usual linear
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case [14,15,16,17]. Using these measures, the problem of ider-
tifving optimal generalized state-space structures is considered.
The theory is then applied to the example of the right-shift op-
erator.

I SENSITIVITY MEASURES

] Given the system (1)-(2), the corresponding transfer function
) h(z) =c(zE ~ A)™'S. 3
Any matrix pair (U,V) € GL2(R) £ GL.(R) x GL,([R) will
provide another n** order realization of the transfer function by
applying the action

¢ : GLI{®)xZ,—L,

: (UV)x (E,Ab,e) — (U-EV,U-" AV, U-'5,¢V), (4)

where I, is defined to be the set of all n** order realizations.
In general ¢ is not a similarity action since U and V' may be
distinct. When n corresponds to the minimai order required to
realive A(z), then all minimal realizations of h(z) lie on an orbit
of ¢

Tl:lemmtyofthemdefnnctnntothcralmtnnp&
rameters is described by the sensitivity functions:

oh(z) LR dh(z) dA(z) (5)
8E.~,- ' 3A‘,- ' 06. ! 0:.~ )
to the resalts for the usual linear system case reported
in [14,15,16,17), we bave the following lemma.

I@m 2.1 Define the vectors

fla) = GE-A'b )
() = (:E7 - A U

then
M g FEesa) )
B - s B =sare. o

Proof. The expressions in (8) are obwom generalizations of
those in [14,15,16,17]. The expressions in (9) are proven uaing
Kronecker matrix algebra [3,4] as follows :

3h(z AzE- A

e aar -8

= (la®cz2E = A)" WUena (L. ® (zE - A)7'Y),

= (In @C)




where U, .. = Do, Toas B @ £, and E, is a0 n x n matrix
with uniy at the (1, k) position and zeroen elsewhere. Thus,

dhiz) _ (Bhi2)\T
54 - \ox

(I @87 (2E7 - A7) " Waa (L @ (2£7 = AT)"'7)
(I ®bT(zET = AT))I2ET — AT} T g 1)
((zET - AT)'T) © (b7 (2E7 - AT)7Y)

(2E7 = AT)"1THT(2ET = AT)

= g(2)[7(2)
33(5) _ _a'lfg'é)z" = -ﬁ(z-l)fr(z-l)z-x = -Q(Z)F(Z)z_,

where A, f and § are defined by (3), (6) and (7), respectively,
with the roles of A and E interchanged. o

Since ultimately we wish to optimize a acaler measure of sen-
sitivity, define the following integral measure for matrix valued
functions of z

Gt = (% e dz)',

where |- ||» denotes the Frobenius norm. By Parseval’s theorem
it is clear that the norm | - ||, is a matrix generalization of the
usual /, norm for sequence spaces, When p = 2 such a2 norm
has the phyvsical interpretation of energy. The scalar sensitivity
measuare, M, is defined as

VR ELY R L AN L
u=lgz] +[3a] + 5] [
This is a generalization of the sensitivity measure developed in
[14,15,16,17] for state-space realizations. The use of two different
matrix norms in (11} is strictly for mathematical convenience.
Rather than minimizing M directly, it is more tractable to
minimize a particular upper bound on M. We refer to the re-
sulting realizations as dound-optimal. Observe that

ﬂahiz)y = o2 @), = sl Wil (12)

Thus, it foliows from the Cauchy-Schwarz inequality that

ahl® _ (1 flok] ..\
7@l = (wfla, )

(2,,1 ot e = )

(10)

(1)

< g5 flotal = dz- o fUA(a 0 d
= foli 1115 - (13)
Likewise,
77| < a5 s e ok funaty e

llgliz 1/ - iz (14)

L

where /(z) = 2. Letting {f,} and {g,} denote the inverse 2-
transform of f(z) and g{z), respectively, it follows from Parse-
val's theorem that

Il = 7 { loiz)lp 2" dz (15)
and
W1 = g Ml = e (17)
= .E ﬂuful (18)
= ..i e (19)

(Note that |if - I}l = [|flls.) Thus, M is bounded above by
M =2 Z Th Z R Z Th+ Z grge. (20)

M = M- if and only if there exist scalar a such that g. = af,
for every integer k.

For singular systems the expressions for f, and g, can not
be.given explicitly in terms of the realization parameters (as is
the case for usual linear systems). However, the sequences can
be represented implicitly in terms of the system’s fundamental
matrix [11,12]. The unique Laurent expansion about the point
at infinity of the resolvent matrix (z£ — A)=? is given by

GE-AF = 5 g,

E=-py

(21)

where g > 1 is the index of nilpotency of the matrix pencil
(zE - A). The fundamental matrix {¢,} satisfies the recursion
relations

Edy — Abuoy = &l (22)
étE - Q'k-nA 6MI (23)

(6:s is the Kronecker delta.} In terms of the fundamental matrix,
{/+} and {g.} are expressed as

fk = O.b Ugrn

(24)

Gt = CBp Uran, (25)

where u, is the unit step function. Hence, another expression
for M* is

Mn - 2vbn.¢‘b va¢( ::?

IS—‘ B—u

el o0
+ Y Félab+ T ol

ey [~

For the usual linear system case, ¢, = A* for k¥ > 0 (zero
otherwise} and g = 1. In this case, the summation involving
b in (26) can easily be shown to be equal to the trace of the
reachability grammian. Likewise, the summation involving c is
equal to the trace of the observability grammian. The set of
bound-optimal state-space structures are those that minimize

(27)

(26)

MEQM.I%E=O




over all possible realizations. The bound-optimal set is charac-
terized by the property that each member has its reachability
grammian equal to its cbservability grammian. Such realizations
are said to be essentially balanced [8,18]. In order to establish
an analogous result for singular systems, we wish to express M*
in terms of grammian matrices. There are at least two ways
to define the reachability and observability grammians for sin-
gular system. Each definition ultimately depends on how the
concepts of reachability and observability are extended from the
nopsingular to the singular case. This is still an active area of
research {1,2,6,7,11,13]. Consider first the reachability and ob-
servability matrices defined by Lewis in [11,13]. The subscript
"S™ indicates that these definitions follow from the notion of
reachability and observability in the symmetric sense.

Definition 2.1 [11] For the system (1)-(2) with | zE - A|#0,
define the symmetric reschability and observability matrices as

- OQb 016 R ¢lb
25.6(51 "L b) - é-.—]b . ¢-?b é-lb (28)
and
[~ Cé-c-l
CalEag)=|® 1|, (29)
E 1
cd; o,

respectively, for some non-negative inleger i,

In terms of the matrices in the definition above, the patural
"definitions for reachability and observability grammians are as
follows.
Definition 2.2 For the system (1)-(8) with | zE - A |# 0,
define the symumetric reachability and observabslity grammians
as

Ps, = RsiR5, (30)
and

Qs.i = O;:. os.h (31)
respectsvely.

It is easily shown using (22) and (23) that the steady-state
grammians (when the limits exist)

a | Do $abb7¢] 0
T [
a _ [ T2, 67cTcon 0
R T e [
satisfy the matrix equations
EJPE, = AgPsAL+EJSVET (34)
E:QsE‘ = A;QSAE‘PEI‘?:'EA. (3‘5)
where
_[E 0]. {40
GobbT o7 0 -
& = [ bre; é-.bb’c'vZ.J (37)
T éTC‘.CQQ 0
e = o 0 o7 cTeo.. J (38)

Another useful reachability-observability grammian matrix
pair comes from the foliowing definition.

Definition 2.3 [1,13] For the system (1)-(2) wth | E = A |#
0. define the forward reachability and ovservability matrices as

2.(E,A.b)=[¢-.b Buaid ... Db God Gb ... ¢.b3l
(39)

ond

[ ed., ]
€Oyt
[-{.

CQo
-

O.-(E, A' C) = ' (4'0)

C;i )

respectsvely, for some non-negative integer i.

In terms of the forward reachability and observability matri-
ces, the natural definitions of the reachability and observability
grammians are given below.

Definition 2.4 For the system (1)-(2) with | zE = A |# 0,
define the forward reachability and observability grammians as

.= RAT (41)

and
Qi = G‘Toi' (42)
respeclively.

It is easily verified that the steady-state forward grammians
{when the Limits exist)

-

P2 lmP=3 ebe (3)
k=ep
Q 2 limQ= Y ¢ (4)

satisfy the equations
EPET APAT + (ESobbT¢TET - Ao, 06T 9T, AT) (45)
ETQE ATQA+ (ET¢TTchoE — ATHT cTeo_, A). (46)

For the usual linear case, equations (45) and (46) reduce to the
familiar Lyapunov equations. (Note that Definition 2.4 is closely
related to, yet distinct from, that given by Bender in [1]. The
main difference is that P and Q as defined above will aiways be
non-pegative definite.) The main result of this section is now
given in the following lemma.

Lemma 2.2 For the system in (1)-(2), the sensitiviiy measure
M aatisfies the inequality M < M*, where

M = 2TrPTrQ+TrP+TrQ (47)
= TrPsTrQs+Tr Ps+TrQs. (48)

Proof. Substitute the definitions for P and Q into (47). Equa-
tion (48) follows directly from (47), since Tr Ps = Tr P and
Tr Qs =Tr Q. [
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We first consider the problem of minimizing M* over oll
minimal realizations of a fixed transfer function h{z). In view of
{4), the effect of a transformation pair ({,V') on the grammians
Ps and Qs is given by the action

vs GL:(&) X (wllh)z — (gﬂ-xh)i
L (UY) X (PQs) = (P AP T, 07QSD), (49)

where 0 = [, @ U and ¥ = I, ® V. Similarly, the effect of a
transform pair on P and Q is given by

¥ 1 GLI(R) x (R0%%)? = (RM2)

s (UV)x (P.Q)— (VI'PV-TUTQU).  (50)

Since (U,V) can be selected arbitrarily from GL?(R), then for
some given (P, Q) apply the transformation

Uo=di  Ve=1l, (51)

with ¢ > 0. Then,
M()=2¢TrPTrQ+eTr P+ TrQ. (52)

Thus, the sensitivity measure M can be made arbitrarily small
since 0 < M < M*(¢). This is a phenomena that does not
occur in the usual linear system case, primarily because the set
of similarity transformations

SE{UV)eGLR) | U=V} (53)

is much more restrictive. Observe that (U,, V) is not an element
of S.

From a practical point of view, the transformation ¢, .v,) i8
pot very useful. The resulting realizations for small values of ¢
would have poor quantization properties since the components
of E and A could be made arbitrarily large relative to the com-
ponents of b and c. The problem herein is to sufficiently restrict
the set of admissible transformations such that the problem has
a meaningful answer. There are many possibilities. We shall
consider the problem of minimizing M* over the set of general-
ized state-space transformations baving the same fixed £ matrix.
For example, in studying the solvability of singular systems or
in realizations methods researchers often use the so-calied semi-
ezplicit form of (1)-(2), where E is fixed to be

I, o .
E-{ooy (54
and 0 < = < n (see [5,19]).

Define for arbitrary fixed E, the se: of transformations leav-
ing E invariant:

Te={{,V)eGL:R)| EV=UE}. {53)

When £ = I then clearly T = S. To perform the minimization
of M* = M} over Tg, we employ a generalization of the Lagrange
multiplier technique given in [8,18]. The method allows one to
adjoin a matrix constraint to 3 scalar vaived performance index
by using the following lemma.

Lemma 3.1 For arbstrary matrices X and Y,
TrAX-Y)=0 {56)
Jor all orthogonal matrices A, sf and only if X =Y.

Theorem 3.1 M; is mintmized over Tp for arbstrary fized E
only if
EP=QE. {57)

Proof. First consider minimizing the product Tr P-Tr Q over
Te. Define a Hamiltonian

H=Te(V'PV-T)Tr(UTQU) + ATr A(EV - UE),  (58)

where ) is the Lagrange multiplier and A is any orthogonal ma-
trix. A pecessary condition for an extremal is

(—f% = Tr(V'PV-T).2UTQ - AEA=0 (59)
aH -l J=T17=1 UT .
a7F = (=VTPVSTVS).Tr(UTQU) + ME = 0. (60)

Eliminating A and A by combining (59) and (60) gives
Tr(UTQU) - EV-'PV-T = Tr(V-\PV-T).UTQUE. (61)

Thus, the optimal transformations (I/,V') will generate a matrix
pair (P, Q) such that

Tr(Q)- EP=Tr(P)-QE. (62)
Now obeerve that for non-negative definite P and Q
' TrP+TrQ>2TrP-TrQP, (63)

with equality if and only if Tr P = TrQ. Hence, minimizing the
full performance index

Mp=TrPTrQ+TrP+TrQ (64)
requires Tr(Q) - EP=Tr(P)-QE and TrP=TrQ.»

In the event that E = [, it foliows that those realizations
satisfying (57) are the essentially balanced realizations of [8,18]
or those specified in [9,10,15,16.17). I E has the form given
in (54), then it follows easily that any bound-optimal realiza-
tion (E, A.b, ¢) has a corresponding matrix pair (P, Q) with the
structure

T o To -
P=[o Pp]; Q=[0 Qo]’ (63)

where L € ®*" and Pp, @p € Ri*—xi*="). Choosing (U',V) €
T}: such that

1T 0 1}, ,_[T o

gives for small values of « > 0 the approximatior
My TrT'ST-T.TrTTET +TrT'ST- T+ TrT7CT. (67)
Letting A denote the ™ eigenvalne of T and using the methods
in {14,15,16,17], it follows directly that
v 3 .
M, 2 (Za\.) +2:4\.‘. (68)
=l =]

Furthermore, there aiways exist T € GL,{®R) such that this lower
bound is achieved arbitrarily closely.
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V. EXAMPLE
Coasider Lhe problem of determining the minimum sensitivity
generalized state-space realization of the right-shift operator in

semi-explicit form. It is easily verified, for example, that A{z) =
z can be minimally realized by
11
=4 5]

- (1O},
£= 53]
= [ =*. .-
b-[lJ,c%-lq.
The corresponding fundamental matrix is given by

0 1 b
(5 4] e

0= 00 b=
[0 1] k=2
0 : otherwise.
Thus,
_fr1y}, {12
P=[ia) e=[a ]

and M} = 27. Observe that (P, Q) above does not satisfy the
bound-optimality criterion. Now appiy the transformation pair

{1 21, [to
) I
The new realization is
10}, _fo1
pof ~=[0 ]

(L] a=o1]

P|=Q1=11.

The bound-optimality criterion is now satisfied, but M; = 8
not the minimum value of the measure. (The condition in
Theorem 3.1 is only a necessary condition.) Apply a final trans-

formation pair
r=| 1 0}, _J1 0
’_[0 0.1]’ V’"[O 10]

as suggested by (66) such that

E =

by

with

e [2] wefa2]

0
b‘l = {_10];

A {1 0
&‘@‘{OMJ
such that M ~ 3 aa predicted by (68).

q:“l”.

Hence,

V. CONCLUSIONS

The problem of determining minimum sensitivity geperalized
state-space realizations was considered by first defining a sensi-
tivity measure analogous to that for the usual linear system
case. The minimization of the measure was then shown to be
a meaningful problem only if the set of admissible realizations
was significantly restricted. An interesting example of such a
restriction was the subset of transformations which keep the £
matrix invariant. In this case, the optimality criterion devei-
oped was an extension of the known result for the nonsingular
case and led to the notion of an essentially balanced generalized
state-space realization. The theory was appiied to the minimam
sensitivity synthesis problem for the right-shift operator.
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A Hankel Matrix Approach to Singular System Realization Theory

W. Steven Gray

Department of Electrical
and Computer Engineering
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Philadelphia, Pennsylvania 19104

Abstract

The system Hankel matrix plays a central role in realiza-
tion theory for linear time-invariant systems. For example, each
full rank factorization of the Hankel matrix into a reachability-
observability matrix pair is uniquely related to a minimal state
space realization. In addition, factorizations derived from the
singular value decomposition of the Hankel matrix are associ-
ated with balanced realizations, which are known to have optimal
parametric sensitivity properties. In this paper, a system Hanke|
matrix for singular linear systems is defined and, in an analogous
fashion, used to develop a realization synthesis method, define
a balanced generalized state space realization, and characterize
those realizations which have minimum sensitivity properties.

1. Introduction

Developing a complete realization theory for singular linear
systems has provided some challenging problems for researchers.
There has been significant success in the development of algo-
rithms for minimal realization synthesis from given input-output
behavior [3,4,6,7,18]. Theory alsc exists for characterizing mini-
mality {8,17], reachability and observability {1,12,13,14,16], and
determining canouical forms [5]. But a strong unifying realiza-
tion theory for singular systems comparable to that for the non-
singular case has yet to be presented. A solid realization theory
is certainly a prerequisite for deriving physical interpretations of
realizations, as well as understanding computational structures.

In this paper, a Hankel matrix approach to singular linear
system realization theory is presented, which is analogous to the
methods of Kung for the nonsingular case {11]. The focus is
exclusively on discrete-time or descriptor systems. Motivated
by definitions of reachability and observability, the noticn of a
system Hankel matrix is first defined. The system Hankel ma-
trix is then shown to have reachability-observability matrix fac-
torizations which can be used to solve the realization synthesis
problem. Next, the notion of a balanced realization for singu-
lar systems is derived using the singular value decomposition of
the system Hankel matrix. The final section gives an applica-
tion of this theory for synthesizing realizations which have min-
imum parametric sensitivity properties. It is demonstrated that
such realizations are related to the notion of balancing. Analo-
gous connections exist for the nonsingular case [9,19], and such
a connection has been demonstrated in the singular case by a
completely independent method {10].

CH2917-3/90/0000-0073$1.00 ® 1990 IEEE
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II. The Singular System Hankel Matrix

A singular linear system of difference equations

AZ. + Bu. (1)
Cz,, (2)

Ezy; =
W =

where E is a singular n x n matrix, is said to realize a given p
by m rational transfer function matrix H(z) when

H(z) =C(zE - A)™'B. (3)

In the usual linear system case, where E = I, it is well known
that state variable models are not unique. Any two minimal state
space realizations of a given transfer function matrix are related
by a similarity transformation, i.e., by a change in basis for the
state space. In the singular case, however, minimal realizations
are not necessarily related by similarity. The set of admissible
transformations is considerably larger. Any matrix pair (U, V) €
GL3(R) £ GL.(R) x GL,(R) will provide another n** order
realization of the transfer matrix by applying the action

¢ : GLL(R) x Z,(R) —~ L.(R) .
: (U,V) x (E,A,B,C) — (U*EV,U™*AV,U~'B,CV),

where T,(X) is defined as the set of all n** order realizations.
In general ¢ is not a similarity action since U and V may be
distinct,

For a given realization (E, A, B, C), the corresponding fun-
damental matrix {¢s}s»-, is defined in terms of the unique Lau-
rent expansion about the point at infinity of the resolvent matrix
(zE — 4)~!

GE-A)" = T g, ()
Lo
where 4 > 1 is the index of nilpotency of the matrix pencil
(zE - A) {12,13]. The fundamental matrix is known to satisfy
the recursion relations

Ep =~ Abr-y = Sl (s)
E - duiA Soud. (6)
(6is is the Kronecker deita.) Furthermore, equation (4) implies

that the corresponding transfer matrix, H(z), has a series rep-
reseatation

H(z) = _ —i H:z", (™M
where
H. = Céi—lB‘ (8)




Hence, we shall refer to the sequence {H.}., ., defined by (8) as
the generalized Markov parameters for the system (1)-(2) [15].

The notions of reachability and observability for singular sys-
tems is an active area of research [1,8,12,13,14,16]. The possible
noncausality of (1)-(2) makes the extension of these concepts
nontrivial. For the purpose of factoring the system Hankel ma-
trix, it useful to define the notions of forward reachability and
obaervability as given below.

Definition 2.1 [14] A regular system (1)-(2) is said to be for-
ward reachable if, for every z € R", there exists an integer
J > 0 and an input {u, }i2; such that z, = z when 2, = 0.

Definition 2.2 {14] A regular system (1)-(2) is said to be for-
ward observable if there ezists an integer 1 > 0 such that if
the zero input response {y,}io., 18 precisely zero then Ezq = 0.

The following tests can be used for determmmg forwa.rd reach-
ability and observability.

Lemma 2.1 [14] A regular system (1)-(2) is forward reachable
if and only if the forward reachability matriz

y - D T PR T

R,(E,A,B)= - = " e
[6-uB ¢susB ... 6..B $B 6B ... ¢,B ]

has rank n for § = deg(] zE — A |).

Lemma 2.3 [14] A regular aydem (1) (2) is fonncrd oburuablc
#f and only |/ the forward observability matriz . .

Cé., |
Céps1

Cé.,
Céo |’
Cé

0.(E,A,C) =

Co;
has at least the rank of E when i = deg(]| zE - A |).
Consider the following definition.

Definition 2.3 The system (block) Hankel matriz for a given
rational transfer matriz H(z) is defined as

[ 0 0 0

o o ~H o 0
. _|o -H,., .. -H,
Hligl = H H, .. Hy

0 Hz Hs HH-Z

L Hiy Hig o -.. Higjor |
Theorem 2.1 The system Hankel matriz for a given rational
transfer matriz H(z) has a finite dimensional generalized state-
space realization if and only if there ezists non-negative integers r
and v such that the rank p(¥[r+i,r+j]) = v foralli =0,1,2,...
and § =0,1,2,....
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Proof. Viewing X[i,j] as a 2 x 2 block partitioned matrix, it
is clear that the block matrix in the lower right position is the
Hankel matrix for the strictly proper portion of H(z), say H,,(2).
It is well known that H,,(z) has a finite dimensional state-space
realization if and only if its corresponding Hankel matrix X,,[s, 5]
has the property that there exists positive integer r such that
pHylr +i,r+3]) =rforalls,j =0,1,2,.... In view of the
Weierstrass form [13), if 4 is finite then the necessity condition
follows directly. The sufficiency condition follows from the fact
that when both nontrivial submatrices of ¥[+00, +00] have finite
rank then a finite dimensional generalized state space realization
can be constructed by known algorithms (see for example [6]). =

Lemma 2.3 Every reslization (E, A, B,C) of a given transfer
matriz 18 related to the system Hankel matniz via the equality

X[l,]] = o.'ER,'. (9)
Proof. The result follows directly from the definitions using the
property
—die; 11<0, <0
¢.‘E¢j= ¢i+,‘ 1520, J'ZO,
. 0 : otherwise
which is proven in {14]. »

This factorization is the natural extension of the result known
for the usual linear system case (E = I). A surprising property,
however, of the generalized Hankel matrix is that it only specifies
the system uniquely modulo a feedforward component. That is,
the parameter H, does not appear in ¥[i,5]. The consequences
of this fact will be discussed in the next section. Also, note in
reference to Theorem 2.1 that

o(E) > p(X[+c0, +00]) S v (10)

for any realization (E, A, B,C) of H(z). Furthermore, it follows
directly that

(6= 1)p(H-pr) +rsv < (s -1 min(pm) +r. (1)
When (E, A, B, C) is a minimal realization with n £ n.. then
r=deg(|zE - A ). (12)

From the characterization of ... in {6] a simple calculation gives

Up(Hope1) + 7 < Ria < pmin(p,m) +r. (13)

* By assumption H_,,, is not identically zero. So in the case

where min(p,m) = 1, the inequalities (11) and (13) combine to
give
Rpin = V + 1. (14)

III. Hankel Matrix Realization Theory

In this section, a realization theory and algorithm is pre-
sented which is analogous to that given by Kung in [11] for clas-
sical linear systems. That is, we wish to consider the problem




.

of extracting generalized state space realizations from appropri-
ate factorizations of a given systemn Hankel matrix as suggested
by Lemma 2.3. The general algorithm presented herein is not
viewed as being particularly efficient or stable, but rather as a
theoretical tool to exhibit some of the structure of the realiza-
tion theory. The extended theory is considerably more complex
due to the singular nature of E. For example, unlike the non-
singular case, not every factorization maps to a corresponding
realization. Consider the following definition.

Deflnition 3.1 A factorization X{i,5] = O.ER; of a given rank
v system Hankel matriz, where E € R**", 15 said to be consis-
tent if

f. > Npia,
W. rank(H([i,j]) = rank(E),
1. O.Ek’- - r,',' = oirERj - Li,‘p

where T;; is defined as

E—u-ﬂ
H.,
H,
H,

. 0 o ... (15)

His

4

with the u* block column being nonzero, and L;; similarly defined
with the u'* block row being nonzero. The notations {-]~ and [-|!
represent the block column left shift and the block row up shift
operators, respectively.

A consistent factorization (0;, E, R;) has the property that at
least one realization can be synthesized from it. Observe from
equations (5)-(6) it follows directly that

= AR,;+[0...0B0...0]
0:A+[0...0CT0...0[.

(16)
(17)

ER]
O'E

Premultiplying equation (16) by O; and postmultiplying (17) by
R, gives

O.ER;- = O.‘AR,‘ + I‘;,~ .(18)
0"E'R,- = 0.-AR,~ + L‘i‘ (19)
Thus, the remaining realization matrices are given by
C = theu"™ Nockrow of L,;R! (20)
B = the u™ block column of O!T,; (21)
A = O/O/E-[0...0CT0...0]7) (22)
= (ER;‘-—[O...OBO...O])R,'., (23)

for sufficiently large ¢ and ; and where [-|' denotes a pauedo-
inverse. These realization matrices are uniquely specified if p(0;)
= p(R,) = n. That is, when (E, 4, B, C) is both forward reach-
able and forward observable.

It is of interest to note that since the system Hankel matrix
is not a function of Hj, the direct feed term, one has the option
of setting H, = 0 in the assignment of I',; and L, above and
then compensating by adding the known direct feed term to the
output equation, i.e.,

U = CI. + Hou.. (24)
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In fact, this interplay between the direct feed term in the semi-
state equation and that in the output equation is arbitrary. If
one sets the direct feed parameter in I',; and L;; to any compat-
ible matrix A and then compensates by adding the direct feed
term (H, — A) uy to the output equation, the transfer matrix is
invariant.

IV. Balanced Generalized Realizations

It is well known in linear system theory that a balanced re-
alization of a given transfer matrix can be extracted from the
singular value decomposition (SVD) of its system Hankel matrix
[11). More specifically, the SVD can be used as a tool for com-
puting a special set of factorizations of the Hankel matrix which
has the property that all corresponding realizations yield equal
and diagonal reachability and observability grammians. In this
section, the extension of this idea is considered for the singular
system case. It should be mentioned that the notion of balanc-
ing for singular systems has been defined in [10], but in a quite
different context. The following approach is consistent with this
earlier definition, but is considerably more direct.

In terms of the forward reachability and observability matri-
ces, the natural definitions of the reachability and observability
grammians are given below.

Definition 4.1 For a regular systemn (1)-(2), define the for-
ward reachability and observability grammians as

P. = R.RT (25)

and ’ .
' Q. =070, (26)
respectively. '

It is easily verified that the steady-sta.te forward gnxmma.ns
(when the limits exxst)

" P s lim P, = Z $abb” o} 27
. =
Q é ‘li-; Q.- hz-- CTC¢‘ (28)
satisfy the equations -
EPET = APAT +(E¢,BBT¢TET — A$_,BBT$T A7)
ETQE = ATQA+ (ET$ICTCHE — AT4T,CTCo_,A).

For the usual linear system case, these equations reduce to the
familiar Lyapunov equations.

Theorem 4.1 The infinite system Hankel matrniz ¥[+00, + ]
with rank v corresponding to a qiven rational transfer matriz
H(z) has a consistent factorization of the form

0=ULy" R=t{VT
L o

g=[5 o]

where £Y? and £3/* are full rank diagonal matrices and UTU =
VTV =1I,.

(29)

(30)




Proof. The singular valye decompesition of ¥|+0c0, +00] is
ULVT = USYETYVT (31)

1/3

U[Eg ”f’ g][z;ﬂ 0]vT, (32)
where L% = diag(\/@7,...,\/B0, /Gry-. -1 /Gacs) and EY? =
diag(\/0y,...,\/0.,VBi,...,VPamy) with the a;’s and §;'s as
nonzero free parameters. (0 denotes a compatibly sized zero
matrix.) This decomposition leads directly to the factorization
in equations (29)-(30). This factorization is consistent since con-
ditions (i) and (ii) are satisfied by design, and condition (iii) can
be shown to be satisfied in the limit by direct substitution of
equations (29)-(30) =

X|+o0, +00]

Corollary 4.1 Any factorization of the form given in Theorem
4-1 has the property that all corresponding realizations have for-
ward reachability and observability grammians such that

EP =QE =EL, =Z,E.

Deflnition 4.2 Any realization (E, A, B,C) satisfying equation
(83) is said to be a balanced realization,

(33)

V. Minimum Sensitivity Realizations

In this section, we consider the problem of finding minimum
sensitivity generalized state space realizations of a given ratio-
nal (possibly noncausal) transfer matrix H(z). This problem has
been studied in a purely algebraic context |10}, but the following
approach is geometric in nature and provides a natural applica-
tion of the realization theory described above. First, an abstract
geometric approach is briefly described for solving generic min-
ium sensitivity synthesis problems [9,19). Then the approach
is applied for the singular linear system case.

A generic realization space, say ©, i« defined tc se an affine
space of admissible realizations (usually sorme subset of R*) with
the structure of a smooth Riemannian manifold. Each point 8 &
© corresponds to an admissible realization. In every modelling
problem, there are invariaats which are related to the observed
behavior one is trying to model, e.g. Markov parameters in
the linear systems case or the Volterra kernels for more general
Volterra type systems. Using these invariants, called observables,
it is possible to partition a realization space into equivalence
classes. Two realizations are in the same equivalence class if
their observables assume the same values.

Assume that f: © — R is a smooth function that maps each
realization to a corresponding scalar observable. Furthermore,
assume that f has no critical points in ©. Then if follows that
each equivalence class M, (f) = f~'(k), k € f(©), is a subman-
ifold of © with dimension s — 1. The observable thus induces
a decomposition of the realization space into a set of connected
submanifolds each with dimension s—1. Such a realization space
is said to be foliated, and the points in each equivalence class
make up a leaf of the foliation.

The parametric sensitivity problem is posed as follows: at
which points (realizations) on a given leaf is the effect on the
observables of a parametric perturbation extremal ? Op each
leaf the gradient of f defines a smooth normal vector field. At
each point 8 on a given leaf, the metric tensor g on © induces
the norm || < ||: T,© — R : v — 1/g(8)(v,v) on the tangent space
7,0.
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Definition 5.1 A realization 8* € M,(f) is an extremal sen-
sitivity point of M,(f) if and only if & s an extremal of the
performance indez L(6) = 1 || V1 ||? over the manifold M, (f).

The following Theorem (see [9,19]) gives a necessary condition
satisfied by all extremal points in the event that the metric ten-
sor g on © is taken to be uniform (a typical assumption in the
analysis of fixed point arithmetic).

Theorem 5.1 If a realization 6 € © is an extremal sensitivity
point then

(V*() - anvs(e) =0, (34)
where Vf(6°) and V2f(6°) are the gradient vector and the Hes-
sian operator, respectively, at 8°, I is the identity operator on
the tangent space T,.0 and A € R.

In other words, the gradient vector of f at 8 is an eigenvec-
tor of the Hessian matrix at 6°. The stated condition is the
Euler-Lagrange equation for the constrained optimization prob-
lem. The type of extremum is easily determined by the definite-
ness of the second variation.

To cast the minimum sensitivity synthesis problem for singu-
lar systems in the geometric context described above, we must
first identify the relevant realization spaces. There are in fact two
general realization spaces we shall consider: the space of all n**
order generalized state space realizations (E, 4,8,C), L.(R),
and a space related to all consistent factorizations of all poesible
system Hankel matrices with rank < v, Q,. I, is clearly iso-
morphic to a closed subset of R3*'+*+~_ Ty define the second
realization space, consider the mapping

w }:‘(g) —y g(l-‘ﬂ)»u)x- x RPX(G+1)m+n)
: (EaA'BrC) land (o-'(ErAvC)E9ERj(E’ A'B))! (35)

where ¢, 7 > r — 1 are assumed to be fixed a priori. For fixed E,

the marginal map wg defines the following subsets of R{(i+1)r+s)xn
X RAX (41 )m+u)

0R) = ws(T.(R)
or®) = ws(El'(R)
0l(R) = we(Z(R))
o(R) = we(TL(R)),

where

E,’"(R) = {" e 2.(&) | |zE - A‘ # ol p(Rr-l(EvAs B)) = ﬂ}
IP(R) = {s € T.(R) | |2E - Al #0, p(0._,(E, A,C)) = n}
TLr+(R) = £1'(R) 0 SLe(®).
(fr and fo refer to forward reachable and forward observable,
respectively. Note that £/°(R) is only a subset of all possible
forward observable realizations.)
In general, a group action on a manifold is said to be a foliated
action if the orbits form leaves of a foliation. A foliated action is

characterized by the property that the dimension of the isotropy
subgroup at any point on the manifold is fixed. The actions

$ : GLA(R) x La(R)
: (U, V) x (E,A,b,e)— (U EV, U AV, U-'B,CV)
and

v i GLI(R) x 0,(R) — 0,(R)
: (U,V) x (OE,ER) ~ (OEV,U'ER)




def ned on L.(R) and 0, (R), respectively, are not foliated actions
unless restricted to forward reachable and observable subsets
£!~*(R) and f1/"/°(R), respectively [9].

An orbit in either realization space I7°(R) or 17°(R) under
its group action is characterized not by one observable but by
several, namely the entries from the corresponding Hankel ma-
trix. Hence, we must slightly generalize the geometric method
described above. Define the following families of scalar-valued
observable functions

Tr A(X — O(E, 4,C) E R(E, A, B))(36)
Tr A(X — OER), (37)

f.(E,A,B,C) =
£.(OE,ER)

where A is any compatible matrix which has all of its singular
values precisely equal to unity. Note that if f, = 0 for all such
A then ¥ = OER (proof in [9,19]). Thus, it follows that for
a given singular linear system characterized by a rank v Hankel
matrix ¥, the corresponding orbit in either T/"/°(R) or N/"/°(R)
is uniquely characterized by fi =0o0r f, =0, respectively, for
all admissible A. If we express f, in component form

fi =2 Ay(X - OER);, (38)
5

it is apparent that this family of observables is defined by the

set of constraints on the components of the OF and ER ma-

trices with each component of A playing the role of a Lagrange

multiplier.

To characterize extremal sensitivity realizations of singular
linear systems, we should apply Theorem 5.1 to the observable
fi. This turns out to be a formidable problem. So instead we
shall work in the realization (factorization) space f1//°(R) with
the goal of relating the solutions of the two problems by other
means. Applying Theorem 5.1 to the observable f, is a relatively
simple problem because it is a linear function of the components
of (OE,ER). Consider the following Theorem.

Theorem 5.2 Given a singular linear system characterized by a
square Hankel matnz }[i,1], then extremal sensitivity points on
the corresponding leaf of the foliation induced by the observable
family

fo(O.E,ER,) = Tr A(X[i,i] - O.ER,) (39)
Aave the property that
ER,RT = OFO,E. (40)
Proof. Use the optimality equation (34). In this case
_ | vec(RTET)
0= vec(O:E) | (41)

The observable function f, can be expressed in terms of a quadratic
form in @ via Kronecker product algebra [2] as either

u(8) = T A(H[5,i] ~ (vec(RTET))" - (L @ A) - vec(0,) (42)
or as

u(8) = Tr A(X[i,s] ~ (vec(R]))" - (L ® A} - vec(O,E).  (43)
With these representations, the gradient vector is computed as

—(I. ® A)vee(0;)

~(L® A)Tvee(R]) |° (4

N

It is interesting to note that this computation is possible even
though O and R can not be determined uniquely from O £ and
ER due to the singularity of E.

The computation of the Hessian matrix is not s0 obvious since
the gradient vector is not an ezplicit function of 9. Consider,
however, that by the product rule (see (2], T4.3)

v J
AR = eoFlE e vl = E 0 L

dvec(0,)T
dvec((ER.)” 3
;e(c((za"‘"r))r) = e (E®Lvec(R))| =E® L.
Thus, it follows that
avec(O;
(B o L)oot = I (45)
dvec(RT)
Eel) Ry = ™ (46)
For brevity, let
_ _Ovec(0) _ 3vec(RT)
Do = avec(o‘_E)fr Dr = W. (47)

Then, by the chain rule (see [2], T4.6), it follows that the Hessian
matrix is

3 0 - I. @ A Do

e fl(a) = [ —(I. @A)TDR ( 0 ) J . (48)

The optimality condition, then, is as follows:
(V2£u(0) = ALL)V£i(6) =0, (49)
[ =My —(L®A)D, ] . [ ~(LeAvec(0) | _,
~(L®A™Dy - ~(L®A)Tvec(rT) | =
) 50
Equation (50) gives directly that _ (%0
" Avee(0)) + Do(l, ® A)Fvec(RT) = 0 (51)
Da(% ® A)vec(0:) + Avec(RT) = o (52)

Premultiplication of equations (51) and (52) by (ET @ L) and
(E ® L), respectively, and applic:tion of the properties given in
(45) and (46), gives

A(E™ ® L)vec(Q,) + (I ® A)"vec(RT) = 0 (53)
(L ® A)vec(0) + ME @ I)vec(RT) = 0.  (54)
It follows then that
AC.E+A™RT = 0 (55)
AO; +ARTET = 0. (56)

Hence, the conclusion foillows immediately using the fact that A
is an orthogonal matrix and X #0. »

Thus, we concluded that minimum sensitivity factorizations
with E fixed in the form given in (30) have corresponding realiza-
tions that are nearly balanced (letting i — o) in the sense that
they are only an orthogonal transformation (rotation) away from
being balanced. This conclusion is analogous to that reached via
the earlier algebraic approach in [10] which worked directly in
the first realization space, rather than in this intermediate fac-
torization space. When E = ], the optimality condition reduces
to the usual result for linear systems.




V1. Conclusions

In this paper, a definition of a system Hankel matrix is given
for singular linear systems and used to develop a realization the-
ory based on a factorization approach. The singuiar value de-
composition was then applied to the system Hankel matrix to
define a balanced generalized state-space realization. Such real-
izations were then used to characterize those realizations which
have minimum parametric sensitivity properties.
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OF SINGULAR SYSTEMS:
THE TORTOISE AND THE HARE REVISITED
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Abatzact

The notion of system description or representation
is reconciled with system realization or
implementaction. By the lacter a causal construct for
obtaining the solution will be understood. The
realization starts from a particular description, where
dynamical and algebraic equations are separated, and
the dynamical states correspond to integrator outputs.
Clearly such a description {s nonunique. The optimal
realization problem 1s then to find the particular
realization i{n the orbit of a particular group H, which
minimizes the sensitivity measure In [7]. This group H
is a subgroup, leaving the (separation) structure
invariant, of the group characterizing the orbits under
restricted systen equivalence. A practical
implementation 1s one for which asymptotically (in a
well defined sense) the solution is obtained with a
causal regular realization. The asywptotics are
obtained by considering sequences of systems, or as we
propose, via the use of nonstandard analysis methods.
The behavior of the regularizing paranmeter |is
deternmined by the structure at infinity of the original
singular system. As examples, a differentiator and a
pursly algebraic set of equations are discussed.

Incroduction

In previous work on the sensitivity minimizacion
of singular systems (7], the problem of deriving the
realization of the singular system was attacked. This
problem 1is well understood for regular systeas. Its
practical significance is that in the presence of
parssetsr disturbances the response of the (perturbed)
optimal realization is close to the nominal or desired
response. Now in (following a similar programme for
singular systems one 1s faced with an additional
probles of interpretation. What is an implementation
of a singular system? Realization in the pure sense
alvays means an implementation with integrators. As is
well Iknown singular systems may exhibit net
differentiation. How i3 one to implement this? In
discrete time, the situation seems even wvorse, since
noncausal behaviour (i.e. advances) may result. On the
octher hand, any simulation or computation {s inherently
causal.

In this paper ve shall try to reconcile the notion
of system representation or description, and that of
system realization or implementation. The latter will
alwvays mean & causal construction, for instance using
a universal Turing machine. Only when this problem is

satisfactorily answered, and practical ways of
computing solutions to so-called singular systems have
been found, will it make senss to optimize the
computation, and speak of ainimua sensicivicy
lmplementations.

The purpose of this presentation is to provide
some {deas towards the solution of the above sketched

Problem, with practical implementations in mind. Some
nev tools will be given, in particular the nonstandard
analysis. While still a young (a little more than

twenty years) branch of mathematics, its presence has

already been felt in the theory of differential
equations. And vwhile its name may insinuate
abhorritions, it is not true that it lies outside the
"classical"” domain of mathematics, nor {is it in

conflict with it.
in their introduction,

As expressed by Diener and Reeb (5]
the nonstandard analysis adds
2w possibilities to omne’s toolbox by giving the
existing tools more power. This paper will then also
only be a rather modast exploration of a potential use
of nonstandard analysis in a branch of system theory.
Perhaps wmore inspired researchers will smooth out the
corners.

In cthis spirit, cthe differentiator {is explored
first in the next two sections, the last of which
considers the infinte frequency behavior more closely.
The following section presents some general ideas
distilled from this case study. In turn this is
followed by a system consisting of pure algebraic

equations. An effort is made to compute (in a causal
way), solutions, or approximations of solutions to
singular systems. Some reflections are collected in

the conclusions, and an appendix gives a  short

*tutorial® on nonstandard analysis.

Case Study of s Singular Svstem: The Differentciator

The differencistor has a singular representation

RN ISR NE

y = [-1 0] [x5.x5]°

Symbolically, we shall represent the system in an
“open” form, as indicated in figure 1. Here two new
symbols are iIntroduced, a desgructor or black hole
(or sink), indicated by the big dark errow, and a
SXeator or white hole (a source), ind{cated by the big
white arrow. The 4idea iz to let these symbols
represent the algebraic constraints in che above
'system’. Thus the black hole MUST have a zero signal
going INTO {t, whereas ac the "white hole”, a signal is
CREATED, here X1, which forces the black hole input to
be zero.

This work s supported by the U.S. Air Force under grant AFOSR-89-0241 and

Northwestern.
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Figure 1. The "open form” representation.

So far we have only a new picture, but nothing
essentially nev yst. Something new is obtained, at
least heuristically, if we think of the black and white
holes respectively as input and output of soms fast
system, as indicated in figure 2, sitting "behind the
scene”, and then relax the constraint that the black
hole input must be zero.

’— “FAST*

—

Figure 2. The "fast” systea.

Given & smsll deviatior at the input of the "fast”
system, it then quickly changes the signal at the white
hola port, its output. Then one can hope that with
this feedback structure, the black hols input will be
driven to zero. This sounds plausible in words, but
will it work? The problem is how to characterize
*“fast®. Moreover things were discussed in some kind of
a dscoupled vay. What will happen if the two systenms
are connected? Will 1its solution converge in some
sense to the solution satisfying the original
representation? We answer some of thess questions
below.

First assume that the "fast® system is realized by
(;1 - L(xrﬂl).

This is sn observer for s systam vith dynamics
dxl(t)/dt = 0. The factor ¢ is used to indicats that
the observer gain l/¢ is actually very largs. Ve will
quantify it later. If one puts this fast systea
between the black and the whits hole, the overall
transferfunction of the two integrator systea is

%,(8) = Leu(s)/[es?-1]

Clearly this is different from the -su(s) that would
be required to have differenciation from u(t) to y(t).
However one can make this work, if one can apgus that «
is much smaller than the modulus of 1/s° for the
frequencies of interest. This tells us at once that to
consider the behavicur at infinity, ¢ cannot approach
gero independently from the way that s approaches
infinicy!

Practically, this means now that if u(t) has
highest frequency components «, = 2xfy, the
implementation must bs “"faithful” up to frequency 2=f,.
From the above discussion, this requires

e< 1/(4n2£2)

The implementation is then

X=X

X; = L(xg+u)/e

which has transferfunction

H,(s) = sL/[L-cs?)

Faithfulness ylelds then that
Hg(l) =8

The above heuristic ideas thus seem to work.
However some more gquantitative work and precise
definitions will be needed. In particular it was
learned from ths above example that in singular
problems, a regularization should be defined for which
the system becomes purely dynamical. As usual this is
done with some ¢-parameter which one lets tend to zero.
It is here however that problems arise. The behaviour
when s goes to infinity is highly dependent on how ¢
approaches to zero f{n relation to s. In normal
nathenatical parlance, when one considers extensions,
one considers sequences, introduces & notion of
equivalence, and then considers the squivalence classes
as the extended set, wherein the original set is nicely
inbedded by mapping an element x from the original set
to the sequence {x,x,x,X,...). The construction is all
too familiar from the construction of, for instance,
the reals from the rationals. Here one identifies
Cauchy sequences approaching the same limit, i.e. the
equivalence class of all such Cauchy saquences defines
the rteal number. However, this equivalence is too
coarss for some applications. Indeed, using Cauchy
sequances, the notion of "rate °S convergence” is lost,
as the sequences (1/n) and (1/n®) define the same real
(0), but are clearly remarkably distinguishable.

It is in this senss also that the singular systenms
are 1limit points of Cauchy sequences of regular
systens. Such ideas have already been used Dby
Hinrichsen and O‘Hslloran in (8], generalizing the
ides of Young, Kokotovic and Utkin in [14]) on high
gain feedback. Only the behavior at Iinfinicy is
ssbiguous. This need not be so, if ons takss the rates
of convergence of these Cauchy sequences into account,
as was clearly shown in the above differentiator
example. Indeed for some rates the behaviour at
{nfinity will be idencical to that of the singular
systems as described in [11]). lmplementations (1i.s.
Cauchy sequences of regularized realizations) with such
tnplied rates of convergence will be called faithful.

Clearly then we are faced with the problem of
characterizing & singular system as a Cauchy sequence
of regular systeas, while retaining the information
regarding the rate of convergence, pertaining to the
structure at infinity. We need clearly more structure
in our equivalence than {s usually implied. It is now
known that also the real line contains much more
structure than is usually implied. The reals can be
imbedded in the “hyperreals®. Hyperreals can be




ldontiﬁ.ed vith _the equivalence classes of sequences of

reals > Two sequences are considered
cquivalont zf they agree a.e. (in a well specified
measure, based on the notion of an ultrafilter). The

hyperreals contain then the infinitessimally saall and
their {inverses, the infinitely large numbers.
Nonstandard analysis seems therefore to be ths right
framework to analyze the realization problem for
singular systems. But before galloping too far, it
must be mentioned that everything that can be shown
vith nonstandard analysis can also be shown using
conventional tools, but at the sxpense of some more

work. Nonstandard analysis wmerely provides s
convenient language. First let us consider again the
example of the differentiator in order to shed some

more light on this idea.

Stxucture at infinity of the differentiator,

Consider an equation decomposition form of the
differentiator

RN L

y-

and its associated regularized representation

RN RERE

y -

Their polar structures are respectively given by [11]

e -
SE - A =~ 3
-1 O
A oa [ -]
SE ~ A~
=L «¢s

and since L » 0, the latter has the sase (finite) zero
structure as ¢ - 0. The zero-structure at infinity is
deternined by the =zero structure at A = 0 of
respectively

/a3 -1
-1 0

(1/A)E - A = [

and

Y ~ (1/‘) -1
(L/A)E - A =
-L /2

The first one has the Smith-Mcdillan form

/3 0

0 A
thus displaying a zZero at A = 0.
has the Saith-McMillan form

1y 0 ]
0 -

Faithfulness at A = 0 requires that Az - ¢/L “*behaves”
ag A%, implying in turn that ¢ goes to zero faster than
A,

The ¢-implementation

The zero structure of the singular representation 1is
determined by the matrix

[

For instance for the input decoupling zeros, we find

[sE - A B}

vhich has full rank for all finite s, implying finite
controllability and reachability. At infinity, using a
M3bius transformation s = 1/), the invariant factors

are found to be 1/) and 1, indicating the absence of an
input decoupling zero. Incidently, also nots that
{E,B] has full rank, so that the realization is also
reachable at infinity [9][13].

Now let us turn to the rogulatizcd Tepresentation.
The controllability pencil is now

s =10
~L e L

-

(sE - A 31-[

and it has obviously the same finits zero structure as
the singular pencil, as long as ¢ converges to zero.
The infinite zero structurs is nov obtained from the
zero structurs at A = 0 of the reduced fora

1 00
1/2
0 A «

Since ws already established that ¢ = Az. this shows
that the A-realization has no input decoupling zero at
infinity.

In fact note that at infinity, the system matrix
of the singular system and the realization have the
same 2810 structure ({.s. no zero at infinity), however
their g2ingular structure differs.




Repregencations and Reslizations.

Motivated by the analysis of the differentiator in
our previous section, we nov turn to the discussion of
represenctations and realizations. Simply sctated a

or jimplementation should mean a causal
ioplementation, say with integrators. Therefore, the
derivatives of all state-variables must appear on the
left hand side of an equation with coefficient one,
i.e. Erggliz.cion =-=I. A xepresentation or description
is nothing but & set of equations (dynamic and
algebraic) that must be satisfied by the variables in
the discourse: inputs, outputs and the x's. We refer
to these also as the generalized systeam equations. -

Obviously representations (descriptions) cary the
same information under restricted system equivalence
[8]. On the other hand restricted equivalence cannot
be allowed for realizations in the above sensa. A
pseudo realization form is obtained by writing the
generalized system equations in the so-called Second
Equivalent Form (4}, which decouples the dynamical
equations from the algebraic constraints. This
decomposition reflects the physical meaning of
interconnected regular subsystems.

[ , ] [ . ][ . ] [ . }
- + u
0 Al A2 ilx ] LBy
In contrast, the Weierstrass-form or First-Equivalent

Form seems to be more useful for characterizing the
solutions of the generalized system, and its associated

observability and reachability properties. An
equivalence leaving the above structure invariant is
obtained by 1left and right multiplication by
respectively

U U v 0
11 "2

[ ] ) [ N ]
0 Usg Vi2 Vi,

where (U;;, V,,) € Gl(ny)xGl(ny), and V,,~U;l and
V12 and U}i arbi%rary. 1 "2 1

Now obtain an implementable realization from the
pseudo realization by regularization. Because of its
form we refer to this as the e-realization. This
simply means that an €Xo is placed where the zero
appears in the pseudo realization. In view of the
equivalence described above we shall just consider that
the algebraic set of equations is replaced by

Xz - L(Azzlz + A21x1 + Bzu)/t

But notice that this is nothing but an observer, with
infinitely large gain L/¢, for the systeam with state
X2, and (A,C) = (0,-A22). receiving an “"output-
measurement® y_ = Az1X1+Bju  This *fast® systes is
observable 1f o{&,)) ='n,, L.e., if Ay, has full rank.
Since this rank {s {nvariant under the above described
squivalence, 1lack of observability of the fast system
cammot be overcome, unless a second regularization is
brought into the picture, e.g. Ayg —> Agp+sl, thus
making the system (0,A22+u1) observable. Notice that
generalized systems for which Agp has full rank are in
fact redundant representations of regular systens,
since ve can always solve for

%~ Aj(Agyxy +Bqw)

and backsubstitute
%) = (Ayp = ApgAsiagx) + (B - AjjB)u

-1
¥y = (€ = CrAz3Ag1)x

Applicstion to Pyrely Algebraic Equations

In thig section we describe the dynamical solution
of a set of linear equations y = Ax, where A is square
and invertible. This {s indeed a special case of the
Tepresentation, having no dynamical elements, but
containing 2n "states®. However, we can model this by

some pseudo-realization

y W‘*GX]

0 Iy - Ax
and thus the algebraic subsystem has dimension n.
The e-realization yields for the fast subsystem the

"observer”

x = -lAx/e + Ly/e
which has the solution
x(t) = ALy + exp(-LAt/e) (x -A"ly)

yields a balanced

For instance, the choice L = A’
In this case we

realization {GV], 1{f one lets ¢ = 1.
actually have no reference for how fast “fast®™ really
is, since there i3 no dynamical eqation. This
balancedness {s with respect to the disturbability due
to the measurement error, and the reconstructability of
y from x, thus respectively the equations

X - ~A'Ax - A'F

Their associated observabilicy

grammians equal MI.

reachabllity and

gonclysiony

This paper characterized the implementability of a
generalized gystem in terms of the ability to build an
implementation that assymptotically remains faithful to
the properties of the original description. The
practicality of this lies in the fact that all physical

signals are inherently bandlimited, and the
description, wore particularly its structurs at
infinity, gives then an {dea of how "fast" practical

implementations should work. This way the tortoise can
outrun the hare!’ Rates of convergence are important,
and therefors we proposs to use the language of
nonstandard analysis. This has actually not been done
yet in this preliminary version of the paper, as we
vere mersly interested in demonstating the feasibilicy
of an {dea. For the purpose of an orientacion in this
fleld, an appendix on nonstandard analysis is included.




Appendix: Nonstandard Analysis

Nonstandard analysis {s a modern approach to using

infinitessimals 1{n analysis to express limits and its
derived notioms. The theory 1is originated by Abraham
Robinson and modeled after Leibnitz’'s theory of

Its notion of "infinitely close™ is
useful in representing limits, mnot just on the real
axis, buc also in a topological sense, and even in
contexts where the notion is not exactly topological.
This {s the notion which will make it useful to scudy
the theory of singular systems.

{nfinitessimals.

The essential ingrediant of the nonstandard theory
{s the observation that the real line allows for a much
richer strucrure than {t is usually endowed with.
Whereas classically the reals are defined as Dedekind
cuts or Cauchy sequences, the richer structure is
obtained by a similar procedure, but using instead the

notion of a free ultrafilter. Hence, besides the usual
reals, which will be called standard, the new set of
hyperreals will also contain additionmal “nonstandard”
elements. Intuitively speaking the new elements build
up a universe of infinitessimals near each standard:
real. Every element in this universe is infinicely
close to the given real. Infinitely close means that
the distance 1is smaller than any nonzero ordinary
standard real. The fact that this is all brought on
firm logical foundacions, makes the rules for
manipulating Infinitessimals rigorous. But not only
are “infinitely small" unumbers brought in, the
hyperreals also contain the "infinitely large” numbers,
the {inverses of the infinitessimals. Once the
structure of the hyperreals is defined, it is possible
to speak of nonstandard functions, operators, and other
mathematical objects in the same valn. Moreover, all
the theorems of the ordinary standard mathematics apply
in this enriched universe, provided of course that they
are appropriately interpreted. This property 1is
referred to as the Transfer Principle, or Leibnitz’s

Principls, as he proposed that all infinitessimals
should obey the same rules as ordinary standard nuabers.

The weak form of the transfer principle postulates
that for every standard formula F(x) having no other
free varisblas than x, we have

v53%x F(x) = ¥x F(x)
or, squivalently,
3x F(x) = 3%% F(x)

wvhere V3% F(x) means ¥x [st(x) = F(x)] and 3%%  F(x)
means 3x(st(x) and F(x)]. Here st(x) indicates that x
is standard, i.e. an slement in the usual discourse of
mathematics.

it is also possible to project the
The operation is referred to
as taking the Standard Part. This standard part is
also defined for other mathematicecl objects. A typical
approach in nonstandard snalysis is to obtain a
continuous standard object from a discrete nonstandard
object. Infinitary mathematics {s obtained from
floicary msthemetics (the nonstandard construction).
The complete nonstandard solution to a standard problem
consequently involves first of all a "lifting” of the
given standard problem to a nonstandard one, ofvvhigh

0f course
hyperreals on the reals.

it is rhe standard part. Next comes the nonstandard
solution which is usually finitary. Then one showvs
that the standard part to the solution exists, and that
this solves also the standard problem. Free movement
betwsen the standard world and the nonstandard one {is
allowed by the "Transfer Principle®, and the “Standard
Part® map. Such an approach eliminates much of the
burden of mwmodern mathematical rigor, since {t deals
rather simply and in a wmore naive way with the
infinitessimals and the infinitely large. In order to
illustrate {its power, consider che criterion for
continuity in nonstandard analysis:
Given f:R -—> R, a .standard function and x, a
Then f is continuous at x, if

standard real number. o
and only if -

Yé=0 f(x°+6)-f(x°)
The equivalence = identifies numbers that are
infinitessimally close. 1.s. =x~y 1is equivalent to

stating that x-y is infinitessimal.

Of course it has the disadvantage that the language 1is
not yet common, especially to the nonspecialist who
should be using ict.

A very readable introduction to nonstandard
analysis is the recent book (in French) by Diener and
Reeb [5]. An approach via nonstandard analysis to
probability s for instance described in (10]. It
contains a remarkably simple and concise introduction
to nonstandard analysis. Applications to singular
perturbation theory of ordinary differential equations

are described in [2] and {16]. As far as this author
knows, the only attempt to introduce nonstandard
analysis in systems theory was (3], in the context of
instantaneous stabilizability and its robustness
properties. The recent book {1] on nonstandard
analysis has a chapter dsvoted to differential
operators. Its introduction deals with calculus,

topology and linear spaces in nonstandard mathematics.

It is this authors aim to see {f by rephrasing the
singular system problea in the language of nonstandard
analysis, somae of the obscurity presently cloaking the
theory cannot be eliminated, and thus its applicabilicy
enhanced to a wider community.
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ON A HYPERBOLIC PDE DESCRIBING THE FORWARD EVOLIUTION
OF A CLASS OF RANDOMLY ALTERNATING SYSTFEMS

Erik I. Verriest
School of Electrical Engineering
Georgia Institute of Technology
Atlanta, Ga 30332

bstract

For a class of randomly switched linear systems a
cransition functional is introduced. It is shown that
the aexpectation of this function at time t, satisfies a
HYPERBOLIC partial differential equation, which plays a
similar role as the backwards Kolmogorov equation for
diffusions. Its formal adjoint leads to the forward
equation, and their complexicy is determined by the Lie
algebra assoclated with the set of values assumable by
the dynamic matrix A(%,w). The usual  PARABOLIC
Kolmogorov equation is derived from this as a limiting

case. The result leads to Monte-Carlo simulation
methods for solving hyperbolic PDE’s.
Introduction
In this paper, the class of stochastically
switched systems 1Is considered, where the system
parameters are piecewise constant, and assumes only a
finite number of values, i.e. Z(t,w) € (Z;,...Z4).

The applications of such models are widespread: from
target tracking, where the par.meter change occur as
changes in accaleration, bank angle etc., to fault
tolerant control, the different modes being associated
with different failure modes. These hybrid systems
have also been used as approximations for certain
nonlinear systems [1; In this paper, N = 2, but the
generalization is straightforward although of increased
complexity. The switching phenomenon is assumed to
occur at purely random times, and {ts stochastics
stationary. Let the probability of a switch in an

infinitessimal {aterval of length At be At. If N(c)
denotes the number of switches i{n the finite {interval
[0,t), then it is well known that the probability that

N(t) equals k {is given by the ubiquitous Poisson

formula
Prob (N(ct)=k) = e~ *t(ar)K/k! ¢S

Furcthermore, {f the switching times are ordered, +; <
€y < ... < Ty, then the increments N(tz)-N(c ). N(c3)-
N%tz)...., N(tk)-N(ck_l) are i{ndependent. éur method
generalizes a result by Kac (2], where the one-
dimensional motion of a particle with constant speed v,
but wit!, randomly (at Poisson times) reversing
direction was considered, 1.e, the first order affine
system dx/dt € (v,-v}. In his paper, the expectation
of any function of the position was intarpreted as a
solution to the wave equation, but with a "random path
time" subscituted for the real time, followed by
averaging over all pachs. This led to Monte-Carlo
methods for solving the related Klein-Gorden equation,
which 1is significanc {n quantum electrodynamics, and
factors to the Dirac equation (3].

First we define the notion of a general transition
functional: F_ .° R" x R, = R where p s a smooth
map (linear or nonlinear) from the state space R? to
R, and Fw.u {mplicitly defined by

Fo u(®:8) = o(x(t))
(2)

dx(c)/de = £(x(€),u(e),z) ; x(0) = x

This research is supported by a granc from AFOSR and
Northwestern.
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will be called a transition functional fenm zers  slara
“zero" reflects the time at the inttlal event . [r siaw
of the stationarity of the switching prncese, re .n3s
of generality results from this. The set of rransivion
functionals characterizes the state trarsition
completely, and therefore the complete evolutinn ~f ~he
driven system as well. Here, u(t) is some auxiliacy
signal, for instance the input. If u(e) » 0, ard ¢
selects the i-th component of its argument, then =the
transition functional ¢ 13 the i-th component of the

translation operator (4].
a Resu
Consider the alternating undriven linear system
dx(t)/dt = A(t,w)x(t), (3,

where the random matrix A(t,w) assumes the values A_
and A, according to a random switching process. For
instance the matrix process A(t) is patterned after a
telegraph signal, based on the number N(t) of random
points in the interval (0,t). If this number is even,
then A(t) = A, vhereas if it is odd, then A(t) ~ A_.

Define also the averaged dynamic matrix and {ts
"excursion” respectively by A, = (A,+A )/2
and O = (A,-A_)/2. An approximate solution of the
random system 1is first obtained by discretizing the
time in steps of length A, and letting the switching be
commensurate with these sampling times. The aatrix
A(nA) can be expressed as

AO + lnln_l. ..410, (“)
where ¢, is a Bernoulli (1,-1) process, with Pr(e=—1) =
AA. A switching at step k corresponds then to ¢, =« -1.
Hence the state x(t), Iif A(0) = A,, 1is the limic for
A=t/n - 0 of

{I+(Ao*‘n‘n-1""IQ)AJIIff‘b*‘n-I‘n-Z‘"‘lo)AJ"'

...[I+(A°+¢10)A]x°

The state transition matrices P* and P~ follow

4

Pl-i - [I+(A°t(nln-1. . .(10)61 [I*(Aot‘n'l‘n-Z' . "IO)A] . ié)
<o [TH(A 2 0) 8]

The expected transition functionals are now obtained by

Fi(x) = E o[Pax]. (6

and by taking the expectations over ¢ separately one
derives the recursions

Fh(x) = (L-28)F; [ (I+(a, 4 8)x] + AAF'_1[(1+(A°~0)A2;;
Fa(x) = (1-38)F; 1 [(I+(A,-)a)x] + A8Fg ) [(I+(Ag+2)8)x]

By reorganizing the terms, and taking limits for & - 0,
one obtains the partial differencial system

(3/35)Ftx.t) = (3/ax)Flx,t)A,x + A[Flx,e)-Flx,©)]
(8)
(8/9t)F{x.t) = (3/3x)F{x,t)A x + A(th.t)-F(x,:)]




‘s

Upon setting
G = [F*+F)/2 (9)
H = [F*-F")/2 (10)
this is equivalent to the system of PDE’s
8G/at = (8G/3x) Agx + (dH/3x) Qx (an
dH/3t = (3H/3x) A x + (3G/8x) x — 2)H

conditions follow directly from the
Indeed, G(x,0) = Ep(x) = p(x),

Its inicial
definition of G(x,t).

since randomization over A(0,w) just gives the
identity. The second set of conditions follows
similarly from H(x,0)=0. This then proofs the

following theorem.

Theorem 1. The evolution Fv(x,t) of the randomly
switched system (3) is given by the following pair of
PDE’s - -

aF_/at = (3F,/ax) A x + (3H/3x) Ox
o/ o/ As a2

dH/3t = (3H/3x) A x + (ar¢/ax) Ox -~ 22H
with {nitial conditions F;(x.O)-v(x) and H(x,O)‘- 0.

set of PDE's piays the role of the
Introducing the

ajac , 8, -

following

The coupled
backwards Kolmogorov equation {5).
first order differential forms 4, =
x'Q(38/8%x)’', and 60 - x’Aé(a/ax)', the
special case can be deduced.

Corollary 2. If A, and A  commute, then the evolution
of the system (3) is governed by the hyperbolic PDE

(0423-3,) (3,=3,)F,, = (3,)7F, 13

with initial conditions Fp(x,O)-w(x) and 3ch(x.0)-0.

Proof: 1Indeed, if A, and A  commute, then so do Ay and
Q. But then the differential operators 3, and 4d,
commute, and upon elimination of H(x,t) one obtains the
PDE (13). That the initial conditions are as stated
follows also from the main theorem.

conditional density

If % and o represent the
and A(0)

(assuming it exists) of x(t) given x(0)=x,
Tespectively A, and A_, then it follows from

a73t<p™ o> = <ot (X AL(8/3%)-A)@> + <o, Ae>

- <-3/ax(Axp )20 0> + ApT,e>  (14)
that (in the weak sense)
ap* /3t = V- (Axp")=A(s"=p")
(15)

35" /3t = =9 (A_xp™)=2(p =p")

The density of x(t) is finally obraired by p(x,t) =
(p¥(x,t)+p (x,t}}/2.

Using arguments similar to the ones in (1}, it can
be shown [6] that this equation has an interesting
asymptotic Eorn for i< and A(L,w)=pA,(Ct,w) with p-e
such that u</) is kept constant (Q say). Indeed, a
PARABOLIC PDE results, which is the equivalent to the
Ito-differential system where w(t) i{s a Wiener process
with Ew(t)w(s)=Q min(t,s).

dx = (Ay+02)x dt + Agx dw(t) (16)
Clearly, the "jittering” caused by very fast switching
over very large amplitudes in the direction i, has the

same effect as a diffusion. The drift is however NOT
the one given by thg averaged dynamics A,, but an
additional drift Q,x is present. This can be

stabilizing or destabilizing, depending on f,. For
instance if O, has imaginary eigenvalues, scabiiization
may occur, since ﬂo has then negative eigenvalues. If
on the other hand one has high frequency switching, but
4 remains finite, then the stochastic energy (the
integral of |A(t)A(t+r)’'[]) is zero, and the dynamics of
the averaged system is all that remains.

In the noncommutative case a higher order PDE for
F_ 1s obtained. 1Its structure depends on the dimension
of the Lie algebra, generated by A, and A, . For
instance if the commutator of A, and A_ is nonzero, but
commutes with both, then it is known (6] that G
satisfies a third order PDE.

For A=0, the equations are readily solved in terms

of the <characteristics which are exactly the
deternministic evolutions according to the different
modes. For AmQ, the solutions of the PDE are stcill
interpreted in terms of the characteristics, but via a
"random time operator” [6].
ummary and Extensions

It was shown that for randomly alternating

systems, a hyperbolic system of first order PDE's

describes the behavior of the system. From this, a
single higher order PDE results through elimination of
the auxiliary wvariables. The mechanization of this
elimination process and its ensuing complexity is
determined by the Lie algebra generated by the A(t)
values. By using the formal adjoint, this can be
interpreted that under some smoothness assumptions the
density satisfies & type of forward Kolmogorov or
Fokker-Planck equation, which in this case is also of
hyperbolic type. It was shown that asymptotically, the
parabolic equations of diffusion type result, if the
limits are taken in such a way that the stochastic
energy is conserved {in the limiting system. The
results presented here were for linear autonomous
systemas, but extend easily to the nonlinear driven case
with markovian switching between a countable number of
models.

Finally, one can reverse the ideas and develop
stochastic solution methods for hyperbolic PDE‘'s as was
done for parabolic and elliptic ones based on Dynkin’'s
equation [5]. Indeed, such Monte Carlo simulation
methods, are not based on the stochastic evolution {n
the (narrow) Ito sense ({.e. based on an wunderlying
Brownian process), but on a counting process.
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Abstract

In this paper we study the dynamics of time-
homogeneous Markov chain models from a
state-space modeling point of view. It is shown
that a Markov chain model can be embedded in
a 2-D realization theory where markov pa-
rameters correspond to higher-order transition
probabilities. The implications of formulating
a Markov chain model in this state-space do-
main is that many equivalent representations
may exist, some of which may have better ro-
bustness properties. A modified Hankel ap-
proximation algorithm is presented which ex-
actly matches all the Markov parameters. The
algorithm is an extension of the 2-D harmonic
retrieval algorithm introduced in [6].

1. Introduction

Markov chain models have been used
extensively to model random phenomena with
a particular type of dependence; the Markov de-
pendence. A stationary, finite state Markov
chain is defined as a stochastic process having
a finite number of states, the Markovian de-
pendence, stationary transition probabilities,

and an initial set of probabilities (n,»(O))f.‘b'.
Such a process is said to be memoryless; the fu-
ture behavior depends only on its present state
and not on its past history. Hence, only a lim-
ited amount of information is required to prop-
agate the conditional distribution of a Markov
process. Such Markov structure arises in con-
nection with decision making under uncer-
tainty [1], queueing theory (2], hidden Markov
models (3], stochastic dynamic programming
[4], and the solution of linear algebraic, inte-
gral, and differential equations [5], to name
only a few.

Although Markov chains have the con-
cept of state and Markov propagation property
embedded in it, there does not seem to be any
connection with the state-space formulation of
linear dynamicai systems. Having an equiv-
alent linear systems theory for Markov chain
models, one can select a canonical representa-
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tion that is best suited for implementation or
perhaps is less sensitive to word length effects,
limit cycles, etc. Our main concern here is to
develop a 2-D realization theory that yields a set
of equivalent state-space representations for a
given Markov chain model. The 2-D state-
space model corresponds to a pair of row/col-
umn state equations which propagate the transi-
tion probabilities in space, and a temporal state
equation that propagates them in time. The ob-
servations correspond to the higher order tran-
sition probabilities and thus can be seen as
lower level Markov parameters. Finally, the
parameters of the Markov model are unique
modulo a similarity transformation of the
state-space.

A modified Hankel approximation al-
gorithm is presented which exactly matches the
upper level Markov parameters defined as the
higher order transition probability matrices.
The algorithm is an extension of the 2.-D har-
monic retrieval algorithm introduced in [6]. In
the following section, we define some of the ba-
sic properties of Markov chains. In section 3,
we present our 2-D realization theory for
Markov chains. Finally, in section 4, we in-
troduce the Markov chain realization algo-
rithm.

2. Preliminaries: Definition and Properties
: of Markov Chains

A stochastic process {£(n)) exhibits the
Markovian property if

pl&n+1)=j|&m)=i) = p(&(n+1)=j|&n)=i, (D
&(n-1)=iy, E(n-2)=iz, ..., E(0)=in )

for n = 0,1,2, ..., and every sequence (j,i,iy, ...,
in). This is equivalent to stating that the proba-
bility of an event at time n+1 given only the out-
come at time n is equal to the probability of the
event at time n+1 given the entire state history
of the system. The conditional probabilities

pii(1) = p{ E(n+1)=j| &(n)=i } (2)




are called one-step transition probabilities, and
are said to be stationary if

pii(1) = p{ E(n+1)=j | &n)=i } = p( E(1)=j | E(0)=i 1(3)
v n=0(,12,...

so that the transition probabilities remain un-
changed through time. These values may be
displayed in a matrix P(1) = [P;j), called the
one-step transition matrix. The (NxN) matrix
P(1) satisfies

0spy)s1 (4a)

N-1
Y p()=1 for 0<i<N-1 (4b)
& ,

The existence of one-step, stationary
transition probabilities implies the existence of
higher-order transition probabilities, which
can be computed from the Chapman-Kol-
mogorov equations, le., .-

N-1 Lo
pij(k“'s) = Z pi.n(k)pnd(s) (5) :
m=0 Lot

Vk,s=9012 .. and 0<€i,jSN-1. Here

pii(k) = pl E(n+k)=j| E(n)=i ] are called kth-step.

transition probabilities, and may be displayed

in a kth-step transition matrix P(k) = [pi;(k)],

where, in general
0sp <1V k=0,1,2,.. '
and 0<ij<N-1 (62)

N-1
Y pk)=1Vk=0,12,...
j=0

and 0<isN-1
It should be noted that pif0) = 8i; (Kronecker
delta), thus, P(0) = Iy (NxN identity matrix).

The unconditional probability of (E(n))
being in state j at time n = k is given by
N-1
mk) = p{Ek)=j ) = z m(0)pi;(k) -
Vk=12... and 0<j<N-1

(6b)

L

and in row vector form
wk) = xk) mk) wmAk) ... mna(k)] (8)
In general, for irreducible, ergodic Markov

chains, the steady-state probabilities EJ are
independent of i, i.e.,

lim pyk) = lim g(k) =7
—~> oo koo

and satisfy the following conditions:

Oc<msl (9a)
N-1 _

Z ;= 1 (gb)
)=0

N-1

m= Y mpi(1)
ik g’o N (9¢)
and 0<SjsN-1

Finally, for P= lim P(k), A=1is the only
koo
nonzero eigenvalue and T and 1=[1 1...17

are its left and right eigenvectors, respectively.
The interested reader may consult references
[71,(8] for further details on Markov chains.

3. 2-D realization Theory for Markov
Chains

Consider a 2-D state-space model such

as |
| xi14(K) = Asxi(k) (10a)
xigo1(k) = Agxij(k) (10b)

pij(k) = exij(k) (10c)

where x;;(k) is an (Nx1) state vector, A; and As
are (NxN) constant matrices, ¢ is a (1xN) vec-
tor, and Pij(k) is a scalar measurement corre-
sponding to the (i,j)th element of the kth-order
transition matrix. The dynamics of the
Markov chain can be incorporated by allowing
the state vector to vary with transitions, i.e,

xij(k+1) = Wx; (k) (11)

where W is an (NxN) transition matrix. In
addition we assume that A; and A are stability

matrices and the pairs (A;, ¢) and (As, x,,.(0))
are observable and controllable, respectively.
If we recursively solve the state equations (10a),
(11), and (10b), and substitute them in (10¢), we
find that

pi(k)=cAIW"Alx, (0) (12)

corresponds to the Markov parameters of the 2-
D model (10)-(11). However, it should be clear
from our 2-D model that the matrices

A, Az, and W must commute with each other.
As we will see later, the constraints imposed by
P(0) does not allow this commutativity property
to hold. This imposes a constraint on the order
in which the state equations can be updated. In




order to avoid any confusion with this partial
ordering, we rewrite state equations (10b) and
(11) as

(10b)
(119

Xojo1(k) = Agx, (k)
Xoi(k+1) = Wxo (k)

Notice that (11') implies x,,(k+s) = W*Aix,.(s).
Also, the order of state updates is j-k-i (column,
time, row), which leads to the Markov
parameters (12).

The solution to the Chapman-Kol-
mogorov equations yield the higher-order
transition probabilities, i.e.,

N-1 :
pisk+s) = Y Pin(k)pmy(s)

m=0 .

N-
=Y cAlATx.()cAPAlK.L(5)

m=0

N-1
= cAIWY'S' AFx,(0)cAT }Aax...m (13
mao

= cAIW*W (0)Alx,(s)
= cAjAdx, . (k+s)

where
. N-1 . .
Wel0) = 3 AZ'xo.(0)cAT 14)
m=0 ’
can be thought of being a cross Grammian [9]
having joint observability and controllability
properties and satisfying the following Gram-
mian equation

Weo(o) = Aﬁwu(o)Al + xa,o(O)c (15)

We remark that (15) requires N to be large or
AT = A7 =[0] YVm2N. In the following theorem
we prove the latter case, along with other
properties from (A, Az, W, ¢, Xo.(0))x.

Theorem 1: Given an Nth-order 2-D realiza-

tion (A,, Az, W, ¢, x,,(0))x, the following proper-
ties have to be satisfied in order for it to charac-
terize a Markov chain:

i) Xea(0) € Nu(A1) and c" e N, (A])
such that ex,(0)=1

ii) AT =AZ =[0] V m2N

ii1) AzA; = In - x0(0)c

iv) p(A1) = p(A2) = p(A1A2) = N-1

vVAA)=A(A=0;k=12,....N

and MA;A)D=(1,1,1,...,1,0)

vi) AjAzA) = A, and AjA A = A

vii) A, Az, and W cannot commute
with each other

855

Proof: Recall that P(0) = OC(0) = I, where

- -

[
CA;
cAf

[ cAM
C0) =[ %0a(0) Agxon(0) AZxen(0) --- AN'x..(0)]

and by the observability and controllability as-
sumption (p(0) = p(C(0)) = N), 0 =C(0)*. Fur-
thermore, Ox..(0) = e; (the first element of the
standard basis in RY) and OAix..(0) = 0, thus
A1x,,(0) = 0 implies that x..(0) is an element of

N.,(A1). In fact, span[“——x”%);)—”-} = Ny(A1). A
X

similar argument implies cAzC(0) = 0T and thus
cT is an element of the left null space of A;. The

normalization comes from Pe.(0) = cx..(0) =1,
To prove property (ii) we need to make use of the
Cayley-Hamilton Theorem which states that

A(A1) = A(A2) = 0 (characteristic polynomial),
ie, V 0<jSN-1
Al = - oAl - an2AY - -y

cANAlx, (0) = - aTOALX,,(0)
= - 0, = 0

(16)

thus, cAYC(0) = 0T and since ¢T € No(A3), it fol-
lows that A}’ =[0). A dual argument can be used
to show that A2’ =[0]. Property (iii) follows from
the fact that Wa(0) = C(0)0 = Ix and the use of
(15). To prove property (iv) we need the follow-
ing identities from [10, pp. 140 - 141]:
|1 - exen(0)| =] In - xeulo)e|
| Xea(0)e - pIn| = ()N exen(0) - 1]

which implies that u=1 is the only nonzero
eigenvalue of x,.(0)c, therefore, the eigenvalues
of A2A; are A= (u-1)= 1 with multiplicity (N-1)
and A = 0. The same holds true for A;Az, hence,
rank(A;Az) = N-1. Now, since

p(A1A2) < min(p(Ay), p(Al)] S N
N-1 < minlp(A)), p(A2)] SN
we know that the lower bound is satisfied since

the dimension of the null spaces of A, and A is
at least one (it is indeed one), therefore,

aamn




C " N

the left by m columns. Then by the previous
eigenvalue-eigenvector properties, one can
show that N(N-1) rows of O(A,, A3, ¢) and
columns of C(A), Ag, x..(0)) are repeated. This
proves properties (i) and (iii) since rank(O) =
rank(C(0)) = N by definition of P(0). To prove
property (ii) it is easy to show that H can be con-
structed so that column block(j+1) = P(1)column
block(j) and row block(i+1) = P(1)row block(i).
Therefore, P(0) is the only block in H that is in-
dependent of the others, and is of full rank. [J

4. Markov Chain Realization Algorithm

Given P(1), we can form the Hankel
matrix using 2K-2 Markov parameter matrices

from P(k) = P(1)", i.e.,

The Markov chain realization algorithm con-
sists of a pair of upper/lower level steps to de-

termine [0, C(0), W] and [A,, Ag, ¢, Xo.(0)]y., Te-
spectively. Both steps can be achieved through a

singular value decomposition (svd) of H, i.e.,

H=UzV'=0C
=UL? (23)
C=zWV*

where U is a (KNxN) orthonormal matrix, £is
an (NxN) diagonal matrix containing the
Hankel singular values, and V is a (KNxN)
orthonormal matrix. The parameters are ob-
tained from

Upper Level Parameters: [0, C(0), W)

101

- b p O = first (NxN) block of O
(© (1) P(K-1) C(0) = first (NxN) block of 24)
ol O F@ e RO W = (0704°0:0, = GO’
P(K-1) P(K) P(2I.{-2) where Oy consists of the first N(K-1) rows of O
- and O of the last NS_I_(-I) rows of O. The same
0C(0) OWC(0) ... OWX'C(0) definition applies to C .
2 K
- OWf:(m ow .C(O) = ow .0(0) L Level P ters: [An Aa, € xen(O)ln
" e e ¢ = first (1xN) row of O
L OW™'C(0) OW"C(0)... OW™C(0) %4(0) = first (Nx1) column of C(0) (25)
=0C 20) A =C(0"
where P(k) is given by ‘ A, =C(0)0
W 20a(0)  cW*Aaxes(0) cW A% (0) ]
CAIW* X, 0(0)  cAIW Azxoa(0) ... cAIW*AL 'x.0(0)
Pk) =

CAIW*xoo(0)  cAIW*Asx..(0)

| AP W n(0) cAT W Arxea(0) .- cAT WA x0(0)

... cAIW*AN'x..(0) |=0C(k) (21)

and represents a lower level set of Markov pa-
rameters. Similarly, the upper level observ-
ability and controllability matrices are

C=[ C(0) WC(0) WC(0)... WX'C(0) ] (22a)

p~ -

o)

ow
ow? (22b)

ol
"

L OWX! |

as57

where O is equal to O shifted upwards by one
row, the last one being a (1xN) row of zeros

since AY=[0}; and 6(0) is C(0) shifted to the left
by one column.

___ We should point out that since p(f{-) =N,
OChas Hankel structure, therefore, the
following Hankel norm property is satisfied

||ﬁ-—0.6”=6m (26)

which is of the order of machine precision.




p(A1) = p(A2 = N-1. Property (v) follows from
properties (ii) and (iv) since every nilpotent
matrix has all its eigenvalues equal to zero.
Property (vi) follows from properties (i) and
(iii), which implies that A; and Az are g-in-
verses of one another. To prove property (vii)
we need

[ ¢ ]
cAz
OM= cA§

Carl0) =[ x00(0) Arxoo(0) - AN'x00(0) ]

and, if we recall, 05, =0 and Cay(0) = C(0).
Now, suppose P(0) = Oa,Ca,(0) = I, then one can
show that cAsCa,(0) =07 #eJ since ¥ € N,(A),
therefore, AjAz # A2A;. Furthermore, it can be
shown that cAjAs=c and A1AzX..0) = X..(0),

thus, we have cWA;Azx,,.(0) = c¢Wx,,(0), for
instance. A similar argument shows that W
cannot commute with A, either.

We now establish the equivalence be-
tween Markov chains characterized by
[n(0), P(1)]lx and a state-space realization char-
acterized by [A,, Az, W, ¢, x,.(0)]n.

Theorem 2: A Markov chain defined by
[n(0), P(1)lx is equivalent to a 2-D state-space

realization [Ai, Az, W, ¢, X..(0)Ix provided this
one satisfies the properties of Theorem 1.

Proof: Since we know that P(k) = P(1)* we can
use these as Markov parameters. Let us now
form the Hankel matrix from these higher-
order transition matrices, i.e.,

[ P(0) ]
P(1)

P(2) |[P(0) P() P(2)... P(K-1)]=0C

=]
"

L P(K-1) |
Then O = P(0), C(0) = P(0), W=P(1),c=(1,0,0,
0], X0 =cT Ay = I;, and A; ==°in (arrows de-

note shifted identity matrices) can be shown to
satisfy the properties of Theorem 1. Suppose

there is another Nth dimensional realization

[Xl, Xz, W, ¢, X..(0)]y that satisfies Theorem 1,
i.e., then it can be brought to the above canoni-
cal form by a similarity transformation, i.e.,

T=C(0)6. Hence, the two realizations are
equivalent in the sense of [A;, Az, W, ¢, Xe.o(0)]¥
= [TAT!, TAT?, TWT, T, 5.0, If we
recall from the previous section, the initial

probabilities are used in a state equation such
as

r(k) = x(0)P(k)
=n(0)OW C(0)
or
”~ -~ ~
z2(k) = z(O)W (19)

where ;(k)=1t(k)6. Then if we apply the

similarity transformation to (19), i.e.,
o~k -~

WE=TW T, we get z(k)T' = z(k) = n(k)O =

n(k). This shows that the two type of systems

[x(0), P(1)]x and [A1, As, W, ¢, Xus(0)]y carry the
same information. O
Theorem 3: Given an Nth order 2-D realization
A4, Ag, W, ¢, X..{0)]n that satisfies the properties

of Theorem 1, the following properties are
equivalent:

i) (Al, Aa, C) and (Al, Az. X.,.(O)) are
observable and controllable
ii) p(H) = p(P(0)) = N
iii) p(O(A,, Az, ¢)) = p(O(A, ¢)) = N
p(C(A1, A2, x0,0(0))) = p(C(A2, X00(0))) =N

Proof: One can show that the global
observability and controllability matrices [11]

have the following structure
N O 9 r O =
OA, O,

O(Ah Azy c) = OAg = 0’

| 0AY! _J | Ona

C(A4, Ag, x..(0)) =[ C(0) A,C(0) ... AN'C(0) ]
=[ C(0) C1(0)C0)--- Cna(0) ]

where Oa denotes the observability matrix
shifted downwards by m rows (padded with zero
rows). Similarly, C.(0) denotes C(0) shifted to




T . & -y

5. Conclusions

We have presented a 2-D realization
theory for Markov chains which yields an exact
representation. It was shown that the Markov
parameters of the 2-D realization exactly match
the higher-order transition probability matri-
ces of the Markov chain. Since the model is
obtained from a "balanced” type (in this case
optimal) realization algorithm, one should ex-
pect the robustness properties inherent in these
algorithms. Moreover, a parametrization of the
2-D realizations presented here may lead to
canonical structures for certain probability
matrices, i.e., birth-death chains, queueing
chains, etc.. Another potential application is in
the identification of Markov chains from given
data. These issues and other extensions are
currently being investigated and will be re-
ported elsewhere. :
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